

XXVIII IAMM TAPC STATE CHAPTER CONFERENCE 2025

(Indian Association of Medical Microbiologists (IAMM) Telangana and Andhra Pradesh Combined Chapter (Reg. No. 81/2023)

10th - 12th October 2025

"Modern Clinical Microbiology: Challenges, Opportunities and Solutions"

Organised by:

The Department of Microbiology,
Nizam's Institute of Medical Sciences, Hyderabad

DIAGNOSTICS DRIVING ANTIMICROBIAL STEWARDSHIP FORWARD

Does the patient need antibiotics? If so, which one?

ROLE OF DIAGNOSTIC **TESTS**

Confirm bacterial infection and identify the causative pathogen

to ensure optimal patient outcomes and avoid unnecessary antibiotic use.

Determine a pathogen's resistance profile

to select the most appropriate treatment, limit use of broad-spectrum antibiotics and avoid adverse side effects.

Monitor patient response

to personalized treatment duration and discontinue antibiotics as early as possible.

BIOMÉRIEUX'S COMPLETE DIAGNOSTIC SOLUTION SUPPORTS MEDICAL DECISION

VIDAS® B•R•A•H•M•S PCT™

BIOFIRE® PANELS

VITEK® MS PRIME

BACT/ALERT® **VIRTUO®**

VITEK® 2 COMPACT

SERVING PUBLIC HEALTH

Diagnostic tests and data analytics are the basis for resistance surveillance.

Please contact your local bioMérieux sales representative for more details

MICROBIOLOGY DIAGNOSTIC TESTS AT NIMS

S. NO	TEST CODE	DIAGNOSTIC TESTS
1	241W	TORCH COMPLEX
2	244A	RHEUMATOID ARTHRITIS PROFILE (RF IGM CRP ASO ANF)
3	246A	HBC IGM ELFA
4	248A	FAN BLOOD CULTURE(1 SET 1 BOTTLE)
5	248A1	FAN BLOOD CULTURE I SET
6	248A2	FAN BLOOD CULTURE II SET
7	248A3	FAN BLOOD CULTURE III SET
8	248AA	FAN BLOOD CULTURE(2 SET 1 BOTTLE)
9	248AA	FAN BLOOD CULTURE(3 SET 1 BOTTLE)
10	249B	T P H A (T.PALLIDUM HAEMAGGLUTINATION TEST)
11	249C	PUO PROFILE
12	249F	LEPTOSPIRA ANTIBODIES (IGG + IGM) RAPID
13	249G	MYCOPLASMA ANTIBODIES IGG + IGM ELISA
14	249H	ANCA IMMUNO FLUORESCENCE
15	249J	VIRAL LOAD TESTING FOR HIV
16	249K	SCRUB TYPHUS RAPID ICT
17	249L	LEPTOSPIRA ELISA (IGM + IGM)
18	249LM	LIVER MOSAIC IIF
19	249M	ASPERIGILLUS GALACTOMANNAN AG ELISA
20	249N	CHIKUNGUNYA IGM RAPID
21	2490	ANTI JO 1 ANTIBODY ELISA
22	249P	ANTICCP ANTIBODIES
23	249Q	ANTI NUCLEAR ANTIBODY (IMMUNOFLUORESCENCE)
24	250 L	LYME (IGG + IGM)
25	690V	ANTI HEV IGM ELFA
26	696A	ANTI TISSUE TRANSGLUTAMINASE ANTIBODIES (TTG)
27	MB199 V	DENGUE NS1 AG ELFA
28	MB201	DENGUE VIRUS (IGG + IGM + NS1 AG RAPID)
29	MB202	A (RO) ELISA
30	MB203	B (LA) ELISA
31	MB204	ANTI CENROMERE ANTIBODY ELISA
32	MB205	ANTI MITOCHONDRIAL ANTIBODY ELISA
33	MB209	CRYPTOCOCCUS ANTIGEN LATERAL FLOW ASSAY
34	MB210	YEAST IDENTIFICATION & ANTIFUNGAL SUSCEPTIBILITY TEING BY VITEK 2
<u> </u>	1	

S. NO	TEST CODE	DIAGNOSTIC TESTS
35	MB211	YEAST - ANTIFUNGAL SUSCEPTIBILITY TESTING (CLSI MICBROTH DILUTION)
36	MB212	MOULD IDENTIFICATION-PHENOTYPIC 200
37	MB213	MOULD-ANTIFUNGAL SUSCEPTIBILITY TESTING (CLSI MICRO BROTH DILUTION)
38	MB214	BETA D GLUCAN - STAT TEST
39	MB216	MULTIPLEX REAL TIME PCR FOR COMMON FUNGAL INFECTIONOF NAILS
40	MB217	COMPLETE MULTIPLEX REAL TIME PCR FOR COMMON FUNGAL IFECTIONS OF SKIN HAIR AND NAILS
41	MB218	MULTIPLEX REA TIME PCR FOR DETECTION TRICHOPHYTON SCIES AND SQLE (SQUALENE EPOXIDASE) GENE MUTATION
42	MB219	MULTIPLEX REA TIME PCR FOR DETECTION OF ASPERGILLUS PP AND ITS COMMON RESISTANCE GENES
43	MB220	MULTIPLEX QUANTITATIVE REAL TIME PCR FOR DETECTION PNEUMOCYSTIS JIROVECII AND DHPS MUTATION
44	MB221	DIRECT IMMUNOFLUORESCENE TEST FOR THE DETECTION OF ON EUMOCYSTIS CARINII
45	MB222	MULTIPLEX REAL TIME PCR FOR DETECTION OF MUCROMYCET
46	MB223	ASPERGILLUYS GALACTOMANNAN - QUALITATIVE LATERAL FL ASSAY FROM SERUM & BRONCHIAL WASH
47	MB224	ENZYME IMMUNONOASSAY (EIA) TEST FOR HISTOPLASMA CAP LATUM ANTIGEN FROM URINE
48	MB225	LATERAL FLOW ASSAY FOR DETECTION OF ASPERGILLUS ANTIBODIES IGG & IGM FOR SERUM
49	MB226	LATERAL FLOW ASSAY (ICT) FOR DETECTION OF HISTOPLAS CAPSULATUM SNTIGEN FROM URINE
50	MB227	ASPERGILLUS FUMIGATUS SPECIFIC IGE
51	MB228	ASPERGILLUS FUMIGATUS SPECIFIC IGG
52	MB229	BIOFIRE GASTROINTESTINAL PANEL
53	MB230	BIOFIRE MENINGITIS
54	MB231	BIOFIRE FILMARRAY PNEUMO PLUS PANEL(LOWER RESPIRATO PANEL)
55	MB232	BIOFIRE UPPER RESPIRATORY PANEL
56	MB233	BIOFIRE BCID2(BLOOD CULTURE POSITIVE PANEL)
57	MB234	BIOFIRE JOINT INFECTION PANEL
58	MB235	XPERT MTB/RIF ULTRA
59	MB241	XPERT C. DIFFICILE 6
60	MB242	XPERT CARBA-R 0
61	MB246	XPERT CT/NG (GXCTNG - CE 10)
62	MB248	SUSCEPTIBILITY TESTING OF NOCARDIA
63	MB249	SUSCEPTIBILITY TESTING OF NON-TUBERCULOSIS MYCOBACT
64	MB250	SUSCEPTIBILITY TESTING OF MYCOBACTERIUM TUBERCUOLIS
65	MB251	HBV VIRAL LOAD
66	MB252	HCV VIRAL LOAD
67	MB254	HSV QUALITATIVE TEST
68	MB256	DENGUE QUALITATIVE/SEROTYPING TEST

S. NO	TEST CODE	DIAGNOSTIC TESTS
69	MB257	BKV VIRAL LOAD
70	MB258	HIV VIRAL LOAD TEST
71	MB259	CMV VIRAL LOAD TEST
72	MB260	PARVO VIRUS VIRAL LOAD TEST
73	MB261	MTB VIRAL LOAD TEST
74	MB262	EBV VIRAL LOAD TEST
75	MB264	HUMAN INFLUENZA WITH RSV DETECTION
76	MB266	LEPTOSPIRA QUALITATIVE DETECTION
77	MB267	PLASMODIUM SPP. QUALITATIVE DETECTION
78	MB268	SCRUB TYPHUS QUALITATIVE DETECTION
79	MB270	FLU PANEL
80	MB271	SEXUALLY TRANSMITTED DISEASE PANEL
81	MB272	TRANSPLANT PANEL
82	MB273	TROPICAL FEVER PANEL
83	MB274	TORCH PANEL
84	MB275	IGRA QUANTIFERON TB GOLD PLUS
85	MB276	IDENTIFICATION OF YEAST BY MALDI-TOF
86	MB277	IDENTIFICATION OF MOULD BY MALDI-TOF
87	MB278	NEURO PANEL
88	MB279	HPV 16 & 18 DETECTION
89	MB280	FFPE-MTB DETECTION TEST
90	MB281	ALLERGIC RHINITIS -ASTHMA PANEL SCREENING
91	MB282	ALLERGEN PANEL- ANIMAL & INSECTS
92	MB283	ALLERGEN PANEL- POLLEN
93	MB284	ALLERGEN PANEL- MOLDS
94	MB285	ASPERGILLUS FUMIGTUS SPECIFIC IGE & IGG ANTIBODIES
95	MB286	HYPERSENSITIVITY PNEUMONITIS PANEL
96	MB287	GASTRIC PANEL (INCLUDES MILK GLUTEN PEANUTS)
97	MB288	ANTIFUNGAL SUSCEPTIBILITY TESTING FOR DERMATOPHYTES
98	MB289	CHIKUNGUNYA IGM ELISA
99	MB290	ANTI ANNEXIN V ANTIBODY - IGM ELISA & IGG ELISA
100	MB291	ANTI PHOSPHATIDYLSERINE/ PROTHROMBIN COMPLEX ANTIBO-IGM ELISA & IGG ELISA

S. NO	TEST CODE	DIAGNOSTIC TESTS				
101	MB294	HIV-1 & 2 QUALITATIVE DETECTION				
102	MB295	HCV GENOTYPING(1-6 GENOTYPES)				
103	MB296	IV IGRA TEST				
104	MB297	EBV IGRA TEST				
105	MB298	QUALITATIVE DETECTION OF ZIKA VIRUS				
106	MB299	CHLAMYDIA PNEUMONIAE/MYCOPLASMA PNEUMONIAE PCR/QPCR SSAY				
107	MB300	LEGIONELLA PNEUMOPHILLA PCR/QPCR ASSAY				
108	MB301	ADENOVIRUS QPCR				
109	MB302	QUALITATIVE DETECTION OF ENTAMOEBA HISTOLYTICA				
110	MB303	CRYPTOSPORIDIUM PCR/QPCR				
111	MB304	VARICELLA ZOSTER VIRUS PCR/QPCR				
112	MB305	COVID-19 RT PCR TEST				
113	MB306	JAPANESE ENCEPHALITIS VIRUS IGM (ELISA)				
114	MB307	JAPANESE ENCEPHALITIS VIRUS IGG (ELISA)				
115	MB308	WEST NILE VIRUS IGM(ELISA)				
116	MB309	WEST NILE VIRUS IGG (ELISA)				

Pioneers of Neglected Drugs and Rapid Diagnostics

BIOSÝNEX CryptoPS Cryptococcal Antigen LFA

CYTOFLU JOLAVI

JOLVIG

C ABAZA

loLozI

ifylline ER 400mg Tablet

ricin B 50mg Deoxyct Liposomal JOLLIMEX

PRAZIJÓL

SalPHAZ Sulphadiazine 500mg Tablet

Conference Dates & Host

Conference Workshops

10th October 2025 Details of the workshop sessions will be released soon!

Taramati Baradari Resort, lev Guda, Ibrahim Bagh, Golconda Telangana 500031.

JolITRIM Co-Trimoxazok Tablet/Infusion HUELIN

athine Penicillin24 Lac IV Injection

JOLLPEN

Benzyl Penicillin 5 Lac IV Injection

JOLCLO

NOSTOF

Transforming Diagnostics

Bruker MALDI Biotyper® Sirius IVD System – Key Highlights

- Regulatory & Database Strength: FDA & CE-IVD approved, featuring a database of >5,000 species, dual ion mode, advanced optics, LIS integration, and a 7-year laser warranty for reliable, long-term workflow. Dual Ionization
- Mode: Supports both positive (for Microbial ID) and negative (for lipid profiling) ion modes for comprehensive
- microbial identification and analytical performance. Rapid Microbial
- Identification: Fast MALDI- TOF MS identification of bacteria and yeast directly
- Library IVD: identification of >190 mycobacterial species for precise diagnostics.
- Filamentous Fungi Library IVD: Identification of der20atopthyticaldyagnetricantSepsitlytser*alVdD Module: Enables foirect einterntifectationfufrgah positive blood cultures,

significantly reducing time-to-result for bloodstream infections. STAR BL IVD Module:

 Rapid detection of β- lactamase-mediated antimicrobial resistance, including CARBA and cephalosporinase (Cepha), for targeted therapy. Subtyping

• Module: The MBT HT Subtyping Mod automates the detection of specific m peaks, instilling newfound confiden

www.bioinnovations.in vipin.panath@bioinnovations.in 8452006865

MALDI

0

MESSAGE FROM THE CHIEF PATRON

Prof. Dr. N. BheerappaDirector
Nizam's Institute of Medical Sciences
Hyderabad

The XXVIII IAMM TAPC Chapter Annual Conference 2025, hosted by the Department of Microbiology at Nizams Institute of Medical Sciences in Hyderabad, is set to convene in an exceptional venue— the historic Taramati Baradari. This year's event promises to be significant, both in scientific discourse and cultural setting, reflecting Hyderabad's rich heritage.

The conference aims to bring together esteemed professionals from the fields of Bacteriology, Mycobacteriology, Mycology, Virology and Parasitology. Each symposium is crafted to delve into the latest advancements, ongoing challenges, and prospective developments within these critical domains of microbiological research. Participants can anticipate engaging with contemporary topics that are shaping our understanding of infectious diseases and their management.

Furthermore, the conference will feature an array of interactive workshops designed to provide practical training and insights. This hands-on approach is intended to equip attendees with skills and knowledge that can be directly applied in their professional practice, thus enhancing their contributions to the field.

As attendees gather, they will have the opportunity to connect over shared interests and expertise, fostering an environment conducive to collaboration and intellectual exchange. The aim is to inspire innovative ideas that may lead to pivotal discoveries in the microbiological sciences.

The XXVIII IAMM TAPC Chapter Annual Conference 2025 is positioned to be a significant milestone in the academic calendar, serving not only as an educational platform but also as a catalyst for further advancements in microbiology. I wish the Conference a grand success.

Dr. N. Bheerappa

Dr. N.BHEERAPPA

MS Fact Stagt FAMS & SALFRES England, FRES GauteMAS, FAMS, REC

Director & Vice Chancellor

Nizam's Institute of Medical Sciences

Puniaguita. Hyderahad-500082

MESSAGE FROM THE CO-PATRON

Prof. Dr. Liza RajasekharDean
Nizam's Institute of Medical Sciences
Hyderabad

It gives me great pleasure to write a few words as foreword to the IAMM TAPC 2025 conference.

I have personally witnessed the growth of Microbiology over the last three decades, and for a very long time have believed that Microbiology is a strong support system for all of clinical medicine and surgery.

With the recent advances in Microbiology, clinicians and surgeons feel more confident about the outcomes of their patients.

This phase of growth is accelerated and will continue to do so.

In this context, this conference is timely and highly needed to support the continuous learning of all medical professionals and specially microbiologists

I wish the conference all the best.

Prof. Dr. Liza Rajasekhar

MESSAGE FROM THE CHIEF GUEST

Brig. Vishal Vir SharmaSM, Commandant
Military Hospital
Secunderabad

It is a matter of great honour and privilege to convey my message on the occasion of the State Conference on Microbiology. This conference stands as a testament to the dedication of the scientific community in advancing knowledge, strengthening healthcare, and addressing challenges of national and global significance.

The discipline of Microbiology holds a central place in safeguarding human health, agriculture, environment, and industry. In recent years, we have witnessed how rapidly evolving microbes can impact humanity, reminding us that continued research, innovation, and vigilance are of paramount importance. Forums such as this conference provide an excellent platform to share ideas, exchange expertise, and nurture collaborations that contribute to progress and preparedness.

I congratulate the organizers for their initiative in convening this distinguished gathering of experts, academicians, and researchers. I also extend my warm wishes to all participants, especially young scholars, whose enthusiasm and commitment will shape the future of this vital field.

May this conference inspire new approaches, strengthen professional bonds, and contribute significantly to the advancement of Microbiology for the betterment of society.

Brig. Vishal Vir Sharma

(विशाल बीर शर्मा) (Vishal Vir Sharma) बिगेडियर Brigadier

Brigadier कमान्डेट Commandant एम एच सिकन्दराबाद MH Secundarabad

MESSAGE FROM THE PRESIDENT

Dr. B. Venkata RaoSr Professor & HOD
Siddhartha Medical College
PRESIDENT IAMM TAPC CHAPTER

Hearty Welcome to all the Delegates and Dignitaries of the XXVIII IAMM TAPC Chapter Annual state conference 2025 organized by Department of Microbiology NIIMS Hyderabad to be held on 11th and 12th October 2025, preceded by 13 pre-Conference Workshops of different areas to benefit the Budding Microbiologists on 9th and 10th October 2025.

I also hope that this Conference and Workshops is Power packed with many worthy deliberations which will give more Enthusiasm in Younger faculty and Postgraduates.

The theme selected- "Modern Clinical Microbiology: Challenges, Opportunities and Solutions" will through light on untouched aspects

I extend my best wishes to the Dynamic Organizing Team under leadership of Dr P. Umabala Organizing, Chairperson and Dr. Neelima Sudharshan, Organizing Secretary.

I wish you all a pleasant, memorable stay at Hyderabad. I wish the Conference a great Success

Dr. B. Venkata Rao

MESSAGE FROM SECRETARY

Dr. Vijendra KawleConsultant -Clinical Microbiology
Rainbow Children's Hospitals
SECRETARY, IAMM TAPC Chapter

It is with great pleasure that I welcome you all to the XXVIII IAMM TAPC Annual Conference 2025, being hosted by the Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad. This year's theme, "Modern Clinical Microbiology: Challenges, Opportunities and Solutions," is aptly reflected in the thoughtfully structured scientific program. I congratulate and extend my gratitude to Dr Uma Bala Madam, Dr Neelima madam and every member of organizing team for their meticulous planning. The sessions are designed to highlight both core foundations and cutting-edge advancements, from evolving diagnostic techniques to antimicrobial stewardship, autoimmunity, invasive fungal infections, parasitic infections, emerging viral threats and TB elimination strategies. The thoughtfully chosen guest lectures also explore the future of Microbiology spanning career pathways, artificial intelligence in diagnostics, post-graduate training, GIS-based diagnostic networks and culminating with an engaging debate on microarrays. I am confident that all delegates will find this meeting enriching, inspiring and memorable.

It has been an immensely fulfilling year serving as the Secretary of IAMM TAPC. The association continues to grow in strength with 226 new life and postgraduate members added since September 2024, taking our total membership to over 1,000 - a remarkable milestone that reflects the hard work and outreach of Executive council. The association is now registered with the Telangana and AP state medical councils for CME/CPD programs, and all members can utilize the facility of availing credit points for their CME/conferences. The lectures of IAMM TAPC webinar series by eminent faculty and the adoption of Kahoot quiz platform for members' usage have been well received.

My sincere thanks to all senior faculty in the EC- President Venkata Rao sir, Vice president Uma Bala madam, Ex President Ranganathan Iyer sir, Ex Secretary Khaleel sir, Treasurer Kishore sir, Jt. secretary Dr. Shabnum and EC members Dr. Sireesha, Dr. Dhanashree, Dr. Ankitha, Dr Sreekanth and Dr Mallika for their support and valuable contribution throughout the year along.

Looking forward to your enthusiastic participation and meeting all of you in Hyderabad. Thank you.

Dr. Vijendra Kawle

MESSAGE FROM ORGANIZING CHAIRPERSON

Dr. P. Umabala
Professor
Department of Microbiology
Nizam's Institute of Medical Sciences
ORGANIZING CHAIRPERSON,
XXVIII IAMM TAPC CHAPTER 2025

Dear Delegates, Esteemed speakers and Distinguished guests,

It is my great honour and pleasure to welcome you all to the XXVIII IAMM TAPC Chapter Annual Conference 2025 hosted under the auspices of the Department of Microbiology, Nizams Institute of Medical Sciences here in the majestic Taramati Baradari. On behalf of the organizing committee, I extend my heartfelt greetings to the researchers, academicians, industry experts, students, and all the attendees who have gathered here from across the state and beyond.

This conference is a unique platform for sharing the latest scientific advances, innovative research, and emerging trends in microbiology. Our goal is to foster collaboration, knowledge exchange, and inspire new ideas that can contribute to the betterment of science and society.

Over the course of this event, you will participate in insightful keynote lectures, technical sessions, workshops, and debate led by eminent clinical microbiologists and experts in infectious diseases. I encourage everyone to actively engage, network, and make the most of this excellent opportunity for learning and professional growth.

The organizing committee expresses sincere appreciation to all the distinguished experts in the field of Microbiology who have graciously accepted our invitation to participate in this significant event. Their acceptance as speakers and judges underscores their commitment to advancing scientific knowledge and fostering collaboration within the microbiology community. The expertise and insights shared by these professionals will be instrumental in elevating the quality and impact of the conference, contributing to its overall success.

We recognize the vital role played by the Organizing committee members whose dedication, meticulous planning, and tireless efforts have been fundamental in organizing this conference. Their efforts ensure a smooth experience for all the participants and help create a space for valuable scientific exchange and networking.

Thank you all for your enthusiastic participation. I wish you a successful, enriching, and memorable conference.

Dr P Ilmahala

COMPLETE MOLECULAR DIAGNOSTICS (MDx) COMPANY IN INDIA

3B BlackBio Dx Limited is engaged in Design, Development, Manufacturing and Commercialization of qPCR tests, Rapid tests & NGS based Molecular Diagnostic Kits for reliable testing of patient samples.

Widest Range of Molecular Diagnostic Products with over 120 assays

Largest CE-IVD and Indian IVD Product Range

Footprints in over 60 countries globally with presence in over 1500 customer labs

The only Indian Molecular Diagnostic Company with a subsidiary in UK - TRUPCR Europe Limited

Both India and UK Sites are ISO 13485:2016 approved by BSI, UK

The only Indian Company to have received USFDA-EUA for COVID Assay in 2020

The only Molecular Diagnostic Company globally to integrate offerings for RT-PCR,

Rapid Diagnostics and NGS Solutions

A True Make In India Company

Forbes

DGEMS 2023

D Globalist. Accelerating eXtrepreneurs

Part of Select **Companies** with **Global Business** Potential

"Outstanding Achievement Award" in recognition of excellence in R&D through technology, awarded by the Hon'able Chief Minister of Madhya Pradesh

"National MSME Award-2018" for the successful commercialization of a technology based product -TRUPCR® BCR-ABL1 Kit awarded by the Hon'able President of India

"Outstanding Achievement Award" in recognition of excellence in R&D through technology, awarded by the Hon'able Governor of Madhya Pradesh

IAMM TAPC EXECUTIVE BODY

President

Dr. B. Venkata Rao
Sr Professor & HOD,
Siddhartha Medical College,
Vijayawada, AP

Secretary

Dr. Vijendra Kawle

Consultant Microbiologist,

Rainbow Children's Hospitals,

Hyderabad, Telangana

Vice President

Dr. P. Umabala

Professor, Nizam's Institute of Medical
Sciences, Hyderabad, Telangana

Joint Secretary **Dr. M. Shabnum**Professor, Katuri Medical College,
Guntur, AP

Treasurer

Dr Animireddy Kishore

Professor,

Apollo Institute of Medical Sciences & Research,
Chittoor, AP

Executive Member

Dr. P. Sireesha

Consultant Microbiologist, Manipal Hospital,

Rainbow Children Hospital,

Vijayawada, AP

Executive Member

Dr. Dhanashree P Inamdar

Professor & HOD, Mamatha Medical College &

Hospital, Khammam, Telangana

Executive Member

Dr. Mallika

Associate Professor, Kamineni Academy
of Medical sciences & Research centre,
LB Nagar, Hyderabad, Telangana

Executive Member

Dr. B. Sreekanth Reddy

Associate Professor,

Government Medical College, Paderu, AP

Executive Member

Dr. B.A. Ankitha

Assistant Professor,
Siddhartha Medical College, Vijayawada, AP

ORGANIZING COMMITTEE

Chief Patron

Prof. Dr. N. Bheerappa

Director & Sr Professor,

Dept of Surgical Gastroenterology,

NIMS

Co-Patron **Prof. Dr. Liza Rajasekhar**Dean, Sr Professor & HOD,

Dept of Clinical Immunology and Rheumatology,

NIMS

Organizing Chairperson

Dr. P. Umabala

Professor,

Dept of Microbiology, NIMS

Organizing Co-Chairperson

Dr. V.D. Teja

Sr Professor & HOD,

Dept of Microbiology, NIMS

Organizing Secretary **Dr. Neelima Sudarshan**Additional Professor,

Dept of Microbiology, NIMS

Treasurer

Dr. M. A. Patil

Additional Professor,

Dept of Microbiology, NIMS

SCIENTIFIC COMMITTEE

Dr. Kanne PadmajaAdditional Professor,
Dept of Microbiology, NIMS

Dr. Sukanya Sudhaharan Additional Professor, Dept of Microbiology, NIMS

Dr. V.V. ShailajaProfessor & Head, Dept of Microbiology,
Government Medical College, Siddipet

Dr. Manisha S. ManeProfessor & Head, Dept of Microbiology, ESIC,
Hyderabad

Dr. HemalathaSr Consultant, Dept of Microbiology,
Med plus

Dr. Radharani

Head, Dept of Microbiology,

Basavataarakam Indo American Cancer Hospital &

Research Institute (BIACH&RI), Hyderabad

Dr. SwathiProfessor & Senior Specialist Grd I,
Dept of Microbiology, ESIC, Hyderabad

Dr. Sayeeda Begum SR, Dept of Microbiology, NIMS

Dr. ShravyaSR, Dept of Microbiology,
NIMS

Dr. Saria FatimaJR, Dept of Microbiology,
NIMS

Dr. SanaJR, Dept of Microbiology,
NIMS

TRAVEL AND ACCOMODATION COMMITTEE

Dr. M. A. PatilAdditional Professor,
Dept of Microbiology, NIMS

Dr. M. SasidharJR, Dept of Microbiology,
NIMS

Dr. J. GowthamiJR, Dept of Microbiology,
NIMS

Dr. Udaya SreeJR, Dept of Microbiology,
NIMS

FOOD AND BEVERAGES COMMITTEE

Dr. SavithaAssistant Professor, Dept of Microbiology,
MGMH, OMC, Hyderabad

Dr. M. SasidharJR, Dept of Microbiology,
NIMS

Dr. Tasneem SyedScientist,
Dept of Microbiology, NIMS

Dr. Sofia AhmedJR, Dept of Microbiology,
NIMS

SOUVENIR COMMITTEE

Dr. M.V.N.L. Ram Mohan Additional Professor, Dept of Microbiology, NIMS

Dr. Saba HashmiyaAssistant Professor, Dept of Microbiology,
ESIC, Hyderabad

Dr. G. Sai Kavya Sree SR, Dept of Microbiology, NIMS

Dr. ApoorvaJR, Dept of Microbiology, NIMS

Dr. PraveenaJR, Dept of Microbiology, NIMS

INAUGURATION AND REGISTRATION COMMITTEE

Dr. Neelima Sudarshan Additional Professor, Dept of Microbiology, NIMS

Dr. Saba NaazAssistant Professor, Dept of Microbiology, Govt
Medical College, Vikarabad

Dr. Asiya Parween SR, Dept of Microbiology, NIMS

Dr. Ruqaiah WaliullahJR, Dept of Microbiology, NIMS

Dr. Samreen HafezJR, Dept of Microbiology, NIMS

SHADAN INSTITUTE OF MEDICAL SCIENCES (SIMS) TEACHING HOSPITAL & RESEARCH CENTRE

A POST GRADUATE INSTITUTE

(A MINORITY INSTITUTION)

Himayathsagar Road, Hyderabad - 500 091 Telangana, INDIA Affitiated to Kaloji Narayana Rao University of Health Sciences, Warangal-506007, Telangana Recognised by Govt. of India, Ministry of Health/MCI/vide No. U.12012/127/2004-ME (P-II) Dated 07-09-2010

Phones: +91-40-2988 1036 / 37 / 61 / 62 / 63 , Fax: +91-40-66669915, Off: +91-40-29886161 Toll Free: 18001032720, http://www.shadan.in Email: shadan.sims@gmail.com, shadan.sims@yahoo.com

Dr. Mohammed Sarib Rasool Khan Managing Director Shadan Institute of Medical Sciences (SIMS)

It gives me immense pleasure to extend my heartfelt greetings and best wishes to the organizers, delegates and participants of the XXVIII IAMM TAPC Chapter Annual Conference 2025. This prestigious gathering of academicians, researchers and clinicians from across the region stands as a true celebration of scientific spirit, collaboration and innovation in the ever-evolving field of medical microbiology.

The Indian Association of Medical Microbiologists (IAMM) has consistently played a pivotal role in advancing diagnostic sciences, promoting evidence-based research and fostering academic excellence. The annual IAMM TAPC conference, through its rich scientific sessions, symposia and interactive deliberations, continues this noble legacy by bringing together some of the finest minds in the field.

At a time when global health challenges demand precision, vigilance and innovation, such academic platforms serve as a crucible for generating new ideas, sharing expertise and nurturing the next generation of medical professionals. I am confident that the discussions and presentations during this conference will not only enrich knowledge but also strengthen our collective resolve to enhance healthcare standards and public health outcomes.

I commend the organizers for their meticulous planning and dedication in hosting this event and wish the conference grand success. May this occasion truly be an academic feast-inspiring learning, meaningful networking and lasting contributions to the field of microbiology.

LIST OF CONFERENCE VENUES, COLLEGES & ORGANIZING SECRETARIES

S.NO.	Year	College and Venue	ORGANIZING SECRETARY
1	1998	Siddhartha Medical College, Vijayawada	Dr. K.Sreerama Rao
2	1999	Sri Venkateswara Medical College, Tirupati	Dr. A.Gururaj Kumar
3	2000	Gandhi Medical College, Secunderabad	Dr. Gyaneswari
4	2001	Andhra Medical College, Visakhapatnam	Dr. T.V.Ramani
5	2002	Osmania Medical College, Hyderabad	Dr. Dinesh Raj Mathur
6	2003	Rangaraya Medical College, Kakinada	Dr. Shanta Kumari
7	2004	Siddhartha Medical College, Vijayawada	Dr. K.Sreerama Rao
8	2005	Alluri Sitaramaraju Medical College, Eluru	Dr. Indira Balamani
9	2006	Kakatiya Medical College, Warangal	Dr. M. V. Ramanamma
10	2007	Nizams Institute of Medical Sciences, Hyderabad	Dr. V. Lakshmi
11	2008	Mediciti Institute of Medical sciences, Hyderabad	Dr. Manick Dass
12	2009	NRI Medical College, Chinakakani, Guntur	Dr. K.Sreerama Rao
11	2010	Sri Venkateswara Institute of Medical Sciences	Dr. B. Kailasanatha Reddy &
		& Sri Venkateswara Medical College, Tirupati	Dr. A. Gururaj Kumar
12	2011	Guntur Medical College, Guntur	Dr. G.Krishna Murthy
13	2012	Kurnool Medical College, Kurnool	Dr. K.Sreenivasa Rao
14	2013	Andhra Medical College, Visakhapatnam	Dr. I.Jyothi Padmaja
16	2014	Kamineni Institute of Medical Sciences, Narketpally	Dr. K. Sai Leela
17	2015	Mamatha Medical College, Khammam	Dr. B.Anuradha
18	2016	S.V.S.Medical College, Mahabubnagar	Dr. Vasanti Kabra
19	2017	Rangaraya Medical College, Kakinada	Dr. K.R.L.Surya Kirani
20	2018	Narayana Medical College, Nellore	Dr. P. Sreenivasulu Reddy
22	2019	Osmania Medical College, Hyderabad	Dr. P.Shashikala Reddy
23	2020	Andhra Medical College, Visakhapatnam	Dr. P. Appa Rao
24	2021	Gandhi Medical College, Secunderabad	Dr. K. Nagamani
		(Hybrid mode- Physical and Virtual Conference)	
25	2022	GITAM Institute of Medical Sciences & Research, Visakhapatnam	Dr. I.Jyothi Padmaja
26	2023	Gleneagles Global Hospital & Rainbow Children's Hospitals, Hyderabad	Dr. Ranganathan Iyer
27	2024	Govt Siddhartha Medical College, Vijayawada	Dr. B. Venkata Rao
28	2025	Nizam's Institute of Medical Sciences,Hyderabad	Dr. P. Umabala

NATIONAL Scientific & Chemical Co.

5-4-527, Kattalmandi, Nampally Station Road, Hyderabad - 500 001

🔇 Mobile: +91 98855 48450 🏻 🔼 Email: nscc369@gmail.com

SUPPLIERS OF

Scientific Apparatus, Glassware, Electronic & Engineering, Surgical Goods, Lab Chemicals & Diagnostic Kits

DISTRIBUTORS FOR

Borosil

Tarson

SD Fine Chem

Sigma

Euroimmun

Hemoque

J Mitra

SD Biosensor

Blue Star (Polar)

Epredia (Thermo Group)

Himedia

Nice

Qiagen

Leica

Tulip Diagnostics

Athenese

Serving Healthcare Since 1979

BD Phoenix™ M50 and BD BACTEC™ FX

- Reliability
- Dependability
- BD BACTEC[™]FX40 and the BD Phoenix[™] M50 ID/AST system offers an efficient and affordable blood culture and ID/AST solution for low

Solution for Infectious Diseases

- Fungus (1,3)-β-D-Glucan
- Aspergillus Galactomannan Antigen
- · Aspergillus IgG Antibody
- · Aspergillus IgM Antibody
- Cryptococcus Capsular Polysaccharide Antigen
- · Candida Mannan Antigen
- · Candida IgG Antibody
- · Candida IgM Antibody

Bacterial

· Bacterial Endotoxin

PRE CONFERENCE WORKSHOPS – 10th / 11th OCTOBER 2025

Hands-on animal and environmental sampling
rands-on annua and environmental sampling Sequencing for outbreak strain analysis, Case-based infectious disease discussions, Quiz
Identification and diagnosis of major blood parasites Hands-on training (smear, stains, quantification, ICT)
Practical AST panel prep, QC, PK/PD, stewardship strategy design Quality hospital antibiogram development
NGS use in pathogen detection, AMR, metagenomics Sequencing technologies, Bioinformatics pipelines
Advanced diagnostic methods for tropical fevers- molecular and point-of-care tests. Hands-on - Burkholderia pseudomallei culture, ID, antibiotic testing.
Data-driven infection control metrics Audit, performance indicators, incident reporting, root cause analysis
Visual and ELISA-based viral ID Special stains for TB/fungi/parasites
Demonstrations in ocular microbiology Advanced diagnostic techniques-AST and PCR, Real-case discussions with lab-clinic correlation
Blood culture automation-MALDI-TOF,Vitek2, BioFire, clinical decision integration - for speed and accuracy.
Complete CSSD workflow QC Compliance, Practical insights & best practices
NMC-compliant, exam-oriented training in lab processing Technical bench manual with SOPs, QC
Major bacterial pathogen detection, Hands-on classical food lab techniques (MPN, plate count)

*NOTE: S. No. 11 workshop on 9th and 10th October 2025. Remaining all workshops on 10th October 2025

DAY 1 - SCIENTIFIC SCHEDULE

S. No	Time	Activity	Speaker	Designation and address	Topics	Chairpersons / Judges	
1	8:00 AM to 8:30 AM						
2	8:30 AM to 9:15 AM		Dr. Nagamani K Principal, Professor, GMC Janagam Dr. Usha kalavath Professor SIVMS Tirupati Dr. Jyothi Padmaja Indugala Professor & Head, Maharaja Institute of Medical Sciences, Nellimarla, AP				
3	9:15 AM to 10:00 AM	lı	Chief Guest Brig. Vishal Vir Sharma, SM, Commandant, Military Hospital Secunderabad Lifetime Achievement Award Dr. Nandan Singh Sr. Microbiologist				
4	10:0 AM to 10:30 AM	Presidential Oration Award Hall A	Dr. B Venkat Rao	Professor & HOD, Sidd	Professor & HOD, Siddartha Medical College		
5	10:30 AM to 11:00 AM	Dr. Kola Rajyalakshmi Oration award Hall A	Dr. Usha Kalawath	Professor, SVI	MS, Thirupathi	Dr. B Venkat Rao Professor & HOD Siddartha Medical College	
6	11:00 AM to 12:00 PM		Dr. Rahul Narang Prof. & HOD, Dean, AIIMS Bibinagar Dr. G. Jyothi Lakshmi Professor, HOD, GMC Janagam				
7	12:00 PM to 1:00 PM			GBM			
8	1:00 PM to 2:00 PM			Lunch-Banquet I	Hall		
9	2:00 PM to 3.30 Hall A - PM Symposium 1 -	Symposium 1 -	Dr. Srujana Mohanty	Prof. Department of Microbiology AIIMS Bhubaneswar Sijua, Bhubaneswar	Burden of Parasitic infection in India and contributing factors	Dr. Prasanthi Kolli Prof. Sidhartha Medical College	
		PM Parasitology		Prof. Emeritus, National Academy of Medical Sciences (NAMS)	Diagnostic Parasitic Infections: Bridging Traditional and Modern Approaches	Dr. Nikhat Sheerin Addl. Prof. AIIMS Bibinagar	

DAY 1 - SCIENTIFIC SCHEDULE

S. No	Time	Activity	Speaker	Designation a	and address	Topics		Chairpersons / Judges
			Dr. Abhijit Chaudhury	Departm Microbiol Venkateswara Medical Scien	ogy, Sri Institute of	Newer anti parasit and role of Mass administrati	drug	
		Hall B- Symposium 2 - Bacteriology Hall C - Symposium 3 - Mycobacteriolog y	Dr. Ranganathan Iyer	Director, Clinical Infections an Cont Rainbow Childr Group Hyd	d Infection rol ren's Hospital	Clinically relection cumulative antibiogous its impact on AMS	gram and	Dr. Manisha S.Mane Prof. & HOD ESIC Hyderabad
			Dr. Sumit Rai	Professor & F Manga		Challenges in AST and Interpreta	_	Dr. V V Shailaja
	2:00 PM to 3:30 PM		Dr. Ketan Priyadarshi	Associate F - AIIMS D		What's new, W changed: A dive ir updates		Prof. & HOD, GMC Siddipet
			Dr. Noyal Mariya Joseph	Additional F JIPMER, Pu	•	Diagnostic advance Mycobacterial dis Distinguishing M1 NTM	seases:	Dr. G K Paramjyothi Prof. Pulmonary Medicine, NIMS
			Dr. P Vishnu Rao	ID Specialist, A City, Jubil	-	Spectrum of NTM in and Managem		
			Dr. Himanshu Vasistha	International UNOPS- S Partnership SEAI	STOP TB and WHO	NTEP: Goals and S interventions tow elimination	ards TB	Dr. Ramakrishna Pai Addl. Prof. AIIMS Mangalagiri
	3:30 PM to 4:45 PM		Corporate			k		
	1	1 Dr. Arun K		Shik R Manager, Medical affairs, Asia, Biomerieux			using a	ating the menace of AMR automation technology: Is ht at the end of the tunnel ?
10	2	2 Hall A	Dr. Arun Ku	run Kushik R		al affairs Lead, omerieux	Auton	oid, Right, Responsible: nation in sepsis care as a veapon against AMR
	3		Mr. Kaizad	Wadia	_	ManagerMolecular iagnostics India Pvt Ltd	' '	ncement of the molecular n cervical cancer screening

DAY 1 - SCIENTIFIC SCHEDULE

			Dr. Naga Srilatha Prof. & HOD GMC, Kadapa Dr. Sasidhar M Prof & HOD, Vice principal, GMC, Eluru Dr. Hema Prakash Senior Consultant and HOD Sri Sathya Sai Institute of Higher Medical Sciences: Puttaparthi, Andhra Pradesh Dr. Shabnam Professor Katuri medical college Guntur Dr. P Madhurima			
11	3:30 PM to 4:30 PM	Posters (Banquet Hall)	Consultant Microbiologist, Apollon Speciality Hospital, Nellore Dr. Anil Bilolkar Sr Consultant, KIMS, Hyderabad,			
			Dr. Dhanasree Inamdar Prof & HOD, Mamtha Medical College & Hospital, Khammam			
			Dr. K S Vaisakhi Sr. Consultant, Microbiologist, Section HOD, Star Hospitals, Banjarahills			
			Dr. R Shamala Addl Prof , AIIMS BB Nagar			
			Dr. Madhavi Prof. & HOD Bhaskara Medical College			
12	4.45 PM to 5.00 PM	TEA BREAK				
	5:00 PM to 6:00 PM	Papers - Hall A (Krishna Rao Memorial)	Dr. Sumit Rai Prof. and HOD AIIMS Mangalagiri			
	6:00 PM to 6:45 PM	Papers - Hall A Sri. N. Venkata Siva Pramatha Memorial – Best Paper Prizes in "Health Care Associated Infections"	Dr. Vemu Lakshmi Kamineni Academy of Medical Sciences and Research Center			
13	5:00 PM to 6:45 PM	Free Papers - Hall B	Dr. Manik Das Professor, Clinical Microbiology, Central Lab HOD, Mamatha Medical college Dr. Ratna Kumari			
			Professor, HOD, Andhra Medical College, Vishakhapatnam			
	5:00 PM to 6:45 PM	Free Papers - Hall C	Dr. Animireddy Kishore Prof Apollo Medical College Chittor			
		·	Dr. Shankar Venkatesh Prof, HOD, OMC, Hyderabad			
14	8:00 PM to 11:00 PM	Banquet				

DAY 2 - SCIENTIFIC SCHEDULE

S. No	Time	Activity	Speaker	Designation and address	Topics	Chairpersons / Judges
1	8:00 AM to 8:45 AM			Dr. K Saileela Professor & HOD Kamineni Institute of Medical Sciences, Narketpally Dr. Mohammed Khaleel Professor & HOD, Mahavir Institute of Medical Sciences, Vikarabad		
2	8:45 AM to 9:30 AM					
	9:30 AM to 11.00 AM		Dr. Arunaloke Chakrabarti	Director, Doodhadhari Burfani Hospital & Research Institute, Bhupatwala, Haridwar, India	Challenges and opportunities for research in clinical Mycology	Dr. P Vishnu Rao ID Specialist, Apollo
			Dr. Rajeev Soman	Consultant - Infectious Diseases, Jupiter Hospital, Pune.	Challenges in the management of invasive fungal diseases	Dr. Kotari Hemalatha Rao Sr. Consultant Microbiologist, Med plus Dr. GS Murthy Vice Principal, Prof, SVMS Tirupati Dr. Usha Kalavath Prof, SVIMS, Tirupati
			Dr. Shiva Prakash M Rudra Murthy	Professor, Medical Microbiology, PGIMER, Chandigarh	Molecular Techniques in Clinical Mycology	
3			Dr. Pragya Yadav	Director, National institute of one health, Nagpur. Scientist-F and Group Leader, IICMR-NIV Pune Maharashtra	Enhancing laboratory readiness and building a pathogen diagnostic index for emerging viral threats	
			Dr. Ira Praharaj	Scientist - F, ICMR RMRC Bhubaneshwar	Recent advances in the diagnosis of viral infections: Evolving Tools, Evolving Skillsets	
			Dr. Rahul Dhodapkar	Professor, Virology & Regional Influenza Lab, JIPMER, Puducherry	Emerging and reemerging viral infections in India	
4	11:00 AM to 11:15 AM			High Tea		
	11:15 AM to 11:45 AM	Guest lecture-1 Hall A	Dr. Rahul Narang	Prof. & HOD, Dean, AIIMS, Bibinagar	What is the future hold for clinical Microbiologist? Career paths in clinical and public health Microbiology	Dr. G. Jyothi Lakshmi Professor, HOD, GMC Janagam Dr. Arun Kushik R Medical affairs lead, Biomerieux

DAY 2 - SCIENTIFIC SCHEDULE

S. No	Time	Activity	Speaker	Designation and address	Topics	Chairpersons / Judges	
	11:45 AM to 12:15 PM	Guest lecture-2 Hall A	Dr. Giovanni Turra	Machine learning and deep engineer, Computer Vision, Copan Group S.P.A. Digital Microbiology Imaging & Data Analysis R & D Team, Italy	Transforming clinical microbiology with AI: From automation to Intelligent Diagnostics	Dr. Vijendra Kawle Consultant, Rainbow Hospitals Dr. Nina Dutta Roy Director, Sr Consultant, Medclien Laboratories	
5	12:15 PM to 12:45 PM	Guest Lecture-3 Hall A	Dr. Ranganathan Iyer	Director, Clinical Microbiology, Infections and Infection Control Rainbow Children's Hospital Group Hyderabad	Post graduate training and evaluation, Are we ready for tomorrow		
	12:45 PM to 1:00 PM	Guest lecture-4 Hall A	Dr. Prashant Singh	Co-Founder, Celloeome Diagnostics PVT LTD, New Delhi	Optimising Diagnostic Networks through GIS mapping		
	1:00 PM to 1:30 PM	Guest lecture-5 Hall A	Dr. Rajesh Bendre	Chief Pathologist, Global reference laboratory, Apollo diagnostics, Hyderabad	Understanding Autoimmunity	Dr. Jhansi Vani D Consultant Director, Care Hospital Banjara Hills Dr. N Pavani Sr Consultant, Clinical Microbiology, Yashoda Hospital, Secunderabad	
6	1:30 PM to 2.15 PM			Lunch			
		Dr. Rajkumar Jupally Dr. M Sri Ratnamani 2:15 PM to 3:00 PM Hall A Dr. Patil Pratik Yashavant Dr. P Swathi Prakasam	· -	Consultant Critical care, Apollo Hospitals, Jubilee Hills, Hyderabad	Positive microarray tests		
7	2:15 PM to			Sr. Consultant, & HOD, Microbiology, Director Lab Services, Apollo Hospitals, Hyderabad		Dr. Venkat Ramesh Consultant, Infectious Diseases Apollo Hospitals, Jubilee Hills	
	1		Consultant - Infectious Diseases & Infection Control KIMS Hospitals	leading to over treatment	Dr. Sumitrai Professor and HOD AIIMS		
				Admin incharge- lab, Consultant Microbiologist, Infection control officer at Yashoda Hospitals		Mangalagiri	
8	3:00 PM to 4:00 PM	Valedictory and Prize Distribution Hall A					

PRESIDENTIAL ORATION

Cryptococcal Crisis: Unveiling Global Burden and its Diagnostic Challenge

Dr. B. Venkata Rao

President, IAMM TAPC State Chapter, Senior Professor, Siddhartha Medical College, Vijayawada

Cryptococcosis: A life-threatening fungal infection caused by Cryptococcus neoformans and Cryptococcus gattii.

Primary Manifestations: Cryptococcal meningitis (infection of the brain and spinal cord), Pulmonary cryptococcosis (lung infection), Disseminated disease affecting multiple organs.

This was considered as Sleeping giant among fungal diseases by Ajello in 1970 but now it has become an awakening giant since last three decades after emergence of AIDS pandemic.

Initial cases were reported from European continent hence termed as European blastomycosis to differentiate it from north and South American blastomycosis.

It was also called as Torulopsis or Busse-Buschke disease. Emerging fungal pathogens and infections pose increasing threats to global public health.

People most at risk of invasive fungal disease (IFD) are those with a compromised immune system, due to HIV infection, chemotherapy, and immunotherapy for cancer, solid organ transplantation.

In addition ,people with underlying diseases including Diabetes mellitus, liver, kidney disease, Chronic pulmonary disease, viral respiratory tract infections which are newly identified as an at-risk population. The key reasons for the high mortality of cryptococcal meningitis include, 1. Delays in diagnosis, largely as a result of limited access to lumbar puncture and rapid diagnostic assays, 2. The limited availability and high cost of currently recommended antifungal agents, 3. The limited ability to monitor and manage treatment for limiting toxicity.

Therefore, improving diagnostic abilities and developing more effective treatment would reduce the morbidity and mortality.

DR KOLA RAJYALAXMI

27/09/1931-02/03/2011

Dr Kola Rajyalaxmi Oration is dedicated to the inspiring journey and enduring legacy of Dr. Kola Rajyalaxmi, whose pioneering contributions have left an indelible mark on the field of medical microbiology and public health in India. Born to Sri Velandia Nadhamuni Naidu and Smt Narayanamma on 27^{Th} September 1931, Dr. Rajyalaxmi's academic excellence was evident early on, as she completed her schooling in 1946, pursued intermediate studies at PR College, Kakinada until 1948, and was the first person in her family to earn an MBBS from AMC in 1954, followed by a specialization in Medical Microbiology at Guntur Medical College (1955–1959).

Her career spanned several esteemed positions, including Head of the Department of Microbiology at Kakatiya Medical College, Warangal, where she established a thriving department from its very foundation between 1961 and 1968. She later served as Head of Microbiology at Osmania Medical College, Hyderabad, ushering in the upgradation of the department through national recognition and financial support (1968–1973). As Director of the Institute of Preventive Medicine, Hyderabad (1973–1986), Dr. Rajyalaxmi transformed the institute into a national centre for vaccine production and research, acquiring vital resources and organizing major national conferences during her tenure.

Her impact extended beyond academic and scientific realms; as Vice Chancellor of Sri Padmavathi Women's University, Tirupathi (1986–1990), she introduced innovative vocational programs and steered significant infrastructural advancements. Her dedication to women's empowerment was further exemplified through her long-standing role as President of the Andhra Pradesh Mahila Congress (1990–2011), pioneering numerous initiatives for their upliftment.

Dr. Rajyalaxmi's commitment to scientific advancement is reflected in her mentorship of over 25 MD students and 3 PhD scholars, specialized training at CDC Atlanta and Duke University, extensive publications, and leadership in more than 30 scientific bodies. Her election as President of both the Indian Association of Medical Microbiologists (IAMM) and the Association of Hematology and Immunology attests to her national stature and influence. She concluded her public service as a Member of the Legislative Council, Andhra Pradesh, leaving behind a legacy celebrated by generations of scientists and students.

We honour Dr. Rajyalaxmi's remarkable journey which serves as an inspiration to current and future microbiologists, highlighting her spirit of inquiry, dedication to academic excellence, and unwavering commitment to societal progress.

DR KOLA RAJYALAKSHMI ORATION

Journey in Microbiology/Virology

Dr. Usha Kalawath

Professor, SVIMS, Tirupati, Andhra Pradesh

Microbiology is the foundation of modern medicine. With advances across biology, chemistry, and physics our understanding of microorganisms at the cellular and subcellular levels has deepened. This knowledge has enabled the development of vaccines and drugs to prevent and treat many deadly diseases.

My journey in microbiology began in 1991 as an undergraduate student, when I struggled to differentiate between gram-positive cocci and gram-negative bacilli. During MD Microbiology days, I discovered that the world of viruses was far broader than I had ever imagined. During this time, I had the privilege of being mentored by some of the great teachers under whose guidance, I completed my thesis on Mycobacterium tuberculosis, not knowing that my research interests would eventually pivot entirely towards virology.

The shift towards virology began in 2014, when our department was selected by the Indian Council of Medical Research (ICMR) to establish a Virus Research and Diagnostic Laboratory (VRDL). In a sudden turn of events, I was appointed as the Principal Investigator, a role that brought both enormous responsibility and opportunity. This was the beginning of a transformative chapter, allowing us to build virology infrastructure that would become crucial during the most challenging global health crisis in a century: the COVID-19 pandemic.

Thanks to the support of institutional leadership and the state government, the lab's infrastructure was strengthened significantly. ICMR's generous funding, including the provision of a Next Generation Sequencer (NGS), enabled us to publish the first research paper from Andhra Pradesh on SARS-CoV-2 variants.

Our lab's relentless efforts during the COVID-19 outbreak earned national recognition. On August 15th, 2021, we were honoured as the **Best VRDL** by the Chief Minister of Andhra Pradesh. Further recognition followed from the Indian Medical Association (IMA), the district administration, and finally, from ICMR itself during its centenary celebration in November 2024.

The journey was filled with struggles, setbacks, and moments of uncertainty. But with the unwavering support of my personal and professional family and above all, the grace of the Almighty, we have been able to navigate every challenge and continue to grow.

My heartfelt gratitude to the association and the organisers of TAPC for giving me this opportunity to deliver the prestigious oration.

GUEST LECTURE -1

"What does the future hold for a clinical Microbiologist: Career paths in clinical and public health Microbiology".

Dr. Rahul Narang

Professor and HOD
Department of Microbiology
AIIMS, Bibinagar

Clinical microbiology stands at a pivotal crossroads, where rapid scientific innovation converges with the pressing demands of public health. In the public sector, laboratories act as sentinel eyes off disease surveillance—working quietly yet decisively to safeguard millions. Globally, the field faces urgent threats: emerging pathogens, antimicrobial resistance, and climate-driven shifts in infectious disease patterns. In India, these challenges are intensified by disparities in healthcare access. Despite persistent constraints of funding, infrastructure, and workforce, public laboratories remain the backbone of equitable diagnostics, from advanced tertiary centers to remote primary health units.

At its heart lies the daily reality of the clinical microbiologist—balancing precision with urgency, maintaining uncompromising standards despite resource limitations. In para-clinical disciplines like microbiology, the human dimension is often hidden, distilled into numbers on a report. Narrative medicine provides a bridge, reminding us that every culture plate, PCR output, or smear reflects a patient's story—often shaped by delayed diagnosis, social vulnerability, or systemic barriers to care.

The future calls for more than technical skill. Artificial intelligence promises real-time interpretation; portable molecular platforms can carry precision diagnostics to underserved communities; integrated digital surveillance will connect district laboratories to national and global health intelligence systems. Yet progress must contend with chronic understaffing, outdated infrastructure, and the persistent invisibility of laboratory contributions in policy dialogues.

The way forward is clear: develop a clinical microbiology that is both technologically advanced and deeply humanized. Public laboratories must evolve into hubs that not only generate diagnostic results but also articulate the health realities they witness daily. By merging precision science with compassionate narrative, the para-clinical domain can step into the public eye—ensuring that the unseen battles fought within the lab continue to protect and transform lives far beyond its walls.

GUEST LECTURE -2

Transforming Clinical Microbiology with Al: From Automation to Intelligent Diagnostics

Mr. Giovanni Turra

Software Development Manager, Copan WASP

Artificial Intelligence (AI) is at the forefront of a transformative wave sweeping across various disciplines, most notably in clinical microbiology. A significant player in this evolution is COPAN, a global leader dedicated to advancing clinical microbiology solutions. The journey of AI has been marked by pivotal developments since its nascent stage in the mid-20th century, interspersed with both advancements and challenges.

COPAN has not merely observed this transformation; it has actively contributed to the integration of cutting-edge AI and automation technologies within the multifaceted biological and analogical frameworks of clinical laboratories. This innovative synergy has yielded significant enhancements in laboratory operations. Research and publications from COPAN highlight that the incorporation of AI and automation not only accelerates the analysis process but also diminishes the potential for errors arising from human subjectivity and fatigue. By automating repetitive tasks, these advancements alleviate the burden on laboratory personnel and, importantly, help to preserve expertise that may otherwise erode over time.

The necessity for a comprehensive understanding of the AI-driven processes currently being adopted by numerous clinical laboratories and hospitals worldwide cannot be overstated. As we delve into this domain, it is vital to identify existing avenues for improvement and forecast future trends in the application of AI in clinical microbiology.

Moreover, insights into knowledge retention, the training of new personnel, and skill enhancement are critical in ensuring that the workforce is well-equipped to navigate this evolving landscape. The future of AI in clinical microbiology holds great promise, and organizations like COPAN are leading the charge, paving the way for a new era of enhanced laboratory capabilities and improved patient outcomes.

GUEST LECTURE -3

Postgraduate Training and Evaluation- Are we ready for Tomorrow?

Dr. Ranganathan N lyer

Director, Clinical Microbiology, Infections and Infection Control Rainbow Children's Hospital Group Hyderabad

It has been ingrained into our being and senses for many years and decades, that Microbiology is largely a technical subject that demands manual dexterity and skills developed over years of work in the laboratory. This largely revolves around the use of culture media, stains, the nichrome wires, serology platforms and the like to arrive at a diagnosis of various infectious diseases. The curricula developed by senior teachers and microbiologists in yesteryears have also revolved around the same ideas and concepts. This concept or idea, though useful to make a beginning in the 1970's has lost its sheen over the decades and has become largely irrelevant in modern clinical microbiology practice.

The examination pattern in postgraduate examinations is equally ages old and requires urgent attention with modification. It calls for immediate re-structure of the pattern used in postgraduate examinations. This must necessarily involve the use of more clinical scenarios with inclusion of patient material, simulated serology tables and molecular data for interpretation, towards clinical interpretation and impression making with a direction towards appropriate antimicrobial therapy and infection control practices. This must replace the existing pattern that tests laboratory practice and the use of manual skills of plating and staining alone. The existing pattern does not test skills obtained towards better infection control and AMS practices in a three year residency leading to the MD/DNB Microbiology examinations.

The session deals with the issues and problems of the present and existing pattern of training and evaluation and possible solutions of how this may be modified to suit modern medicine so that a postgraduate candidate who is churned out becomes relevant in clinical microbiology practice

PARASITOLOGY SYMPOSIUM

I. Burden of Parasitic infections in India and the contributing factors

Dr. Srujana Mohanty

Professor Department of Microbiology AIIMS, Bhubaneswar

Parasitic infections constitute an immense public health problem in India, contributing to millions of disability-adjusted life years. Rough estimates suggest that in India, an estimated 21% of the population are affected by intestinal parasites, 1.4%-25% by haemoparasites such as filaria and malaria, and another significant number by the parasites affecting the nervous system, such as neurocysticercosis and toxoplasmosis. Many other newly described infections, such as the free-living amoeba and the coccidian parasites are also on the rise. Outcomes are evident in the form of widespread morbidity, leading to malnutrition, anaemia, developmental issues in children, and increased hospital stays.

Principal contributing factors include Environmental, Hygienic, Behavioural and various Socioeconomic issues, combined with an increasing vulnerable population group. Another major driver leading to the increasing recognition of the parasitic burden, is the increasing application of major technical breakthroughs like molecular techniques and proteomics to the existing diagnostic approaches. Environmental factors such as, lack of sanitation (inadequate toilet facilities and improper waste disposal), limited access to safe drinking water and contaminated water and food, can be improved by investing in WASH infrastructure, with provision of safe drinking water sources and sewage systems, along with implementing effective waste management systems like recycling and proper landfill use. Behavioural issues, such as poor hand-hygiene, open-defaecation, barefoot walking and consumption of improperly cooked meat are deep-rooted and need continuous awareness drives to be modified. Poverty, illiteracy, overcrowded living conditions are the prime socioeconomic contributory elements that need attention. India is also witnessing a significant rise in the population with compromised immune status such as, diabetes, kidney failure, organ transplant recipients and cancer, making them easily amenable to opportunistic parasitic infections. There is a pressing need to discuss various key issues to reduce the burden of parasitic infections in India.

II. Diagnosis of parasitic infections: Bridging traditional and modern approaches

Dr Subhash Chandra Parija

Professor Emeritus, National Academy of Medical Sciences, New Delhi Former Director, JIPMER, Pondicherry Former Vice Chancellor, SBV, Pondicherry President, Indian Academy of Tropical Parasitology

Traditional parasitic diagnostics have long relied on microscopic examination of parasites or their components in various body fluids or excreta. While effective, these methods are labour-intensive, time-consuming, and often limited in sensitivity and specificity. Recent advancements in technology have significantly enhanced diagnostic capabilities, introduced novel tests, and refined existing methodologies. For instance, molecular techniques, including polymerase chain reaction (PCR) and next-generation sequencing (NGS), now allow precise genotyping and species identification of parasites, paving the way for a better understanding of parasite epidemiology and resistance mechanisms. In addition, microscopy has been revolutionized through the integration of Artificial Intelligence (AI) platforms, enabling automated, accurate detection of parasites, The future of parasitic diagnostics is also set to benefit from innovations such as point-of-care testing devices, which are crucial for deployment in remote or resource-limited settings. In summary, parasitic diagnostics is transitioning from traditional microscopy to a multidisciplinary approach that incorporates cutting-edge technologies. This transformation promises to improve the accuracy, speed, and accessibility of parasitic disease detection, ultimately advancing global health outcomes.

III. Newer anti parasitic Drugs and role of Mass Drug administration

Dr Abhijit Chaudhury

Professor, Dept of

Microbiology; SVIMS-SPMC(W), Tirupati

Parasitic diseases constitute the majority of the neglected tropical diseases. As they are neglected diseases, so consequently, development of anti-parasitic agents have also lagged behind compared to antibacterial or anti-viral agents. Thus, for example, from 2010-25 more than forty anti-viral agents have been approved by FDA compared to only five anti-parasitic agents. The major reason is because market forces are insufficient to drive the discovery and development of new drugs for parasites. There are multiple roadblocks in the research and discovery of anti-parasitic drugs. Briefly, these include: Flaw in the older approach; Need for Multi-disciplinary and Multi-Organizational Collaboration; Optimum Product Profile;Improper parasite Selection; Lack of appropriate Animal Models; and lastly Economic considerations. During the last 15 years (2011-2025), FDA has approved only five drugs.

- Miltefosine (2014): It is the first oral formulation for leishmaniasis which was first developed as an anti-neoplastic agent in 1980s.
- **Tefenoquine (2018):** It is the first new drug to be approved for the treatment of relapsing Plasmodium vivax malaria in 70 years. It is indicated for radical cure of vivax malaria as well as for prophylaxis against all Plasmodium species.
- Moxidectin (2018): It is an important drug in veterinary medicine for nematodes and other helminths in cattle, horses, sheep, cats, dogs etc. It has been licensed for use in Onchocerciasis in humans, ≥ 12 yrs of age in a single oral dose. This drug is active against the microfilariae of O. volvulus, and not against adult worms.
- **Triclabendazole (2019):** It is a benzimidazole derivative used in veterinary practice since 1983 for treatment of fascioliasis in domestic livestock. It is the only treatment for fascioliasis recommended by the WHO and PAHO. A single dose, per oral, is effective in curing F.hepatica and F.gigantica infection and has activity against Paragonimus spp as well.
- **Fexnidazole (2021):** This is the first oral treatment of Human African trypanosomiasis caused by Trypanosoma brucei gambiense. A ten days of oral administration is effective in both stage 1 (haemo-lymphatic) and stage 2 (meningo-encephalitic) of the disease. It is also being tested against T.cruzi.

A number of molecules are being tried in animal models for various protozoan and helminth parasites, although only very few have entered Phase I or II human trials. The biggest group is the anti-malarials with 14 drugs in clinical development, nine of which are in Phase II. In recent years, research is being directed towards 'ethnopharmacology' with scientific validation of the uses of traditional or "folk" medicine including medicinal plants used in ayurveda and other alternative medicine practices.

MASS DRUG ADMINISTRATION (MDA) is a public health strategy where medications are given to an entire population or a large segment of it in a geographic area, regardless of individual disease status, to control or eliminate infectious diseases. At present, MDA is being actively used under the aegis of WHO with collaboration with local government agencies for the following neglected parasitic diseases:

- 1. Lymphatic Filariasis: Diethycarbamazine/ Ivermectin+ Albendazole
- 2. Soil transmitted helminths: Albendazole/Mebendazole
- 3. Onchocerciasis (Africa): Ivermectin
- 4. Schistosomiasis: Praziguantel

MDA is operational in more than 80 countries, including India . For lymphatic filariasis alone 9.7 billion cumulative treatments were delivered to more than 943 million people at least once in 71 countries between 2000-2023.MDA has successfully controlled the diseases in some countries, but it has not been able to achieve 100% success in many countries due to multiple factors. In addition, there is concern about development of drug resistance in the parasites.

BACTERIOLGY SYMPOSIUM

I. Clinically relevant cumulative antibiogram and its impact on AMS Policies

Dr. Ranganathan lyer

Director, Clinical Microbiology, Infections and Infection Control Rainbow Children's Hospital Group Hyderabad

The hospital antibiogram is a summary of antimicrobial susceptibilities of local bacterial isolates submitted to the hospital's clinical microbiology laboratory. This is usually used by clinical departments to be able to understand the local bacterial susceptibility to various antimicrobial agents and to choose the best possible option in a given clinical situation. They also serve to compare susceptibility rates between hospitals and track resistance trends. There are various methods employed by a clinical microbiologist in preparing the hospital antibiogram. This appears at the beginning as a daunting task, however there are various standard methods described which could be used to prepare the hospital antibiogram. The application of the WHONET score is one such method that is largely helpful and is of great assistance in preparing the antibiogram. This involves regular entry of antimicrobial susceptibility data by the clinical microbiology staff into the WHONET software that is installed into the computer system and then an analysis of the same periodically, that yields a structured antibiogram for the clinical isolates encountered.

Whilst there are many methods and patterns used for preparing the antibiogram, the most important and relevant to clinical use would be one that yields the core organisms with antimicrobial susceptibility patterns in a given clinical situation. This could further be analysed and broken down into outpatient, in patient and ICU basis. In addition in modern medicine, there is a trend wherein isolates obtained from transplant recipients as well as those obtained from specialties such as GI surgery, Nephrology etc are taken into account, when an antibiogram is prepared. These are further broken down into clinical situations in each subspecialty.

It is customary to follow a tabular pattern and the same to be followed separately for Gram positive and Gram-negative organisms. These printed antibiograms may be placed in a print format at nursing stations or could be included in the intranet for easy access for clinical departments, when deciding on empiric antibiotic therapy in a given patient. This is particularly useful when cultures have yet to be collected and sent to Microbiology and the results of the same are not available for clinically directed and targeted therapy.

II. Challenges in AST testing and Interpretation

Dr. Sumit Rai

Professor & Head, AIIMS, Mangalagiri.

Antimicrobial Susceptibility Testing (AST) plays a crucial role in selecting appropriate antibiotic treatments for infections and monitoring the emergence and spread of antimicrobial resistance (AMR). However, several challenges exist within the process of performing AST and interpreting the results, impacting patient care and global efforts to combat AMR.

Challenges in AST testing methods

- Time to Results: Traditional methods like broth microdilution and disc diffusion are time-consuming and labour-intensive, often requiring 18-48 hours to generate results. This delay can lead to delayed targeted therapy and continued use of broad-spectrum antibiotics, contributing to resistance development.
- Complexity and Skill Requirements: Performing AST correctly requires adherence to standardized protocols, including inoculum
 preparation, media selection, incubation conditions, and reading and interpreting results. Errors in any of these steps can lead to
 inaccurate results.
- Limitations with Specific Microorganisms: Some microorganisms, like slow-growing bacteria (e.g., Mycobacterium tuberculosis)
 or those requiring specialized growth conditions, may not be amenable to conventional AST methods.
- Availability and Cost of Reagents and Equipment: Access to quality reagents, antimicrobial disks, control strains, and necessary
 infrastructure and equipment can be challenging, particularly in resource-limited settings.
- Emergence of New Resistance Mechanisms: Rapidly evolving resistance mechanisms necessitate continuous updates to testing
 methods and interpretive criteria, which can be difficult to implement promptly in clinical practice.

Challenges in interpretation of AST results

- Clinical Breakpoint Updates and Commercial AST Devices: The time lag between breakpoint updates and their clearance on commercial AST devices can result in misinterpretation of susceptibility results, potentially leading to suboptimal treatment decisions.
- Lack of Breakpoints for Certain Drug-Organism Combinations: Regulatory agencies may not provide breakpoints for all possible organism-drug combinations, especially for off-label use or with emerging pathogens.
- Discordance between Phenotypic and Genotypic Results: Molecular methods for resistance detection, while faster, don't always
 perfectly correlate with phenotypic susceptibility testing, requiring careful interpretation and validation.
- Subjectivity in Interpretation: Visual interpretation of results, particularly in methods like disk diffusion, can introduce variability and subjectivity.
- Impact of Sample Type and Patient Factors: The complex composition of clinical samples, variations in inoculum concentration, and patient-specific factors (e.g., allergies, comorbidities, drug pharmacokinetics) can influence interpretation of AST results and treatment decisions.
- Polymicrobial Infections: Interpreting AST results from samples containing multiple bacterial species poses a challenge, as tests
 may not distinguish the resistance profile of each individual pathogen.

In conclusion, addressing these challenges requires a multifaceted approach involving continuous development of new technologies, improved standardization, better communication between clinical and laboratory teams, enhanced training, and a global commitment to responsible antimicrobial use and surveillance.

TESTING PHASES	PRE-ANA			ANALYTICAL PHASE			OST-ANALYTICAL PHASE	
			ı	METHODS		10	RESULTS	DISCUSSION
STUDY PHASES	Study Design	Setting	Labora	tory Work	Quality Assurance	Bias		
ISSUES IDENTIFIED	1.	Specimen Types 5. Geo- graphical 2. Sampling 7. Specimen		8. Target	12. EQAS	Acquisition	100	20. Limitations
	Specimen Types			Organism Identification				
	2. Sampling Period		Specimen	9. Antimicrobial Susceptibility Testing			Site / Place of	
	3. Sampling		Processing	10. Additional AMR Tests, Interpretive	13. Accreditation		and Class	
	Strategy	6. Clinical		Criteria& Expert Rules			100	
	4. Target Organisms	Setting		11 AMR Definitions				

III. What's new, What's changed: A dive into CLSI updates

Dr. Ketan Priyadarshi

Associate Professor, AIIMS - Deoghar

Performing culture of infectious micro-organisms and their antimicrobial susceptibility testing (AST) is a crucial and one of the most important diagnostic assay for the clinical microbiology laboratory. CLSI is an international organization which provides various globally accepted guidelines for the performance, interpretation, and quality control of AST for bacteria and fungi, such as CLSI M100, M45, M02 and M07 documents for bacteria, $\underline{M27 + M44}$ for yeasts and $\underline{M38 + M51}$ for filamentous fungi and M24 for Mycobacteria, Nocardia and Other Aerobic Actinomycetes and M11 for anaerobic bacteria.

Clearcut understanding and knowledge of various CLSI documents is a must for every clinical microbiologist. The reliability of every patient's AST report is dependent on how strict the microbiology laboratory adheres to these recommendations and clinical breakpoints, as AST report directly guides the appropriate management of an infective syndrome. These CLSI guidelines are also being used to perform quality control of the AST procedure, which ensures that all the consumables and procedures meet the acceptable requirement to provide an accurate and reproducible result to patient.

Another crucial guideline by CLSI is M39 document which describes methods for preparation and analysis of cumulative antimicrobial susceptibility test data report or antibiogram. Preparation of accurate and reliable antibiogram is a very crucial work of the clinical microbiology department. CLSI also provides M47 documentwhich describes the principles and procedures for blood cultures in detail. The current workshop is planned to enhance our knowledge, clarity and understanding on various important CLSI documents for their better usefulness in our day-to-day AST reporting and services

To summarize, the in depth knowledge of the concepts and information provided in these AST related CLSI documents is very important for the clinical microbiologists to ensure accurate and reproducible reporting of AST results. As these CLSI documents are frequently revised and updated, correct and timely knowledge on the updates introduced in these documents is also crucial.

MYCOBACTERIOLGY SYMPOSIUM

I. Diagnostic Advancements in Mycobacterial Diseases: Distinguishing MTB from NTM

Dr. Noyal Mariya Joseph

Additional Professor JIPMER, Puducherry

The incidence of tuberculosis and non-tuberculous mycobacteria (NTM) diseases, along with related deaths, is steadily increasing worldwide. NTMs, formerly known as atypical mycobacteria, are a distinct group of bacteria within the Mycobacterium genus, separate from the Mycobacterium tuberculosis complex (MTBC) and Mycobacterium leprae. Misdiagnosing NTM as MTBC can lead to prolonged incorrect treatment, as NTM strains often resist standard anti-tubercular drugs and differ significantly in pathogenicity and drug resistance profiles. Accurate and timely differentiation between MTBC and NTM is essential for guiding clinical decisions. Recent advances and evaluations with current genomic databases have resulted in the development of advanced molecular diagnostics like line probe assays (LPA), real time PCR (RT-PCR), whole genome sequencing (WGS), next generation targeted sequencing (tNGS) and conventional PCR followed by Sanger sequencing, that markedly improve upon traditional techniques like acid-fast staining and bacterial culture for distinguishing MTBC from NTM. In JIPMER, we are routinely using LPA to identify NTM species and associated drug-resistance mutations. In addition, we have developed RT-PCR to identify MTBC (targeting IS6110) and NTM (targeting 16SrRNA and ITS) infections directly from clinical samples, and have standardised conventional PCR to differentiate Mycobacterium bovis from BCG strains. We are currently developing Nanopore-based tNGS panels for rapid and precise identification of NTM subspecies and their drug resistance in a single-tube assay, tNGS provides quick differentiation and drug resistance profiling of NTM, while WGS offers deeper insights into genetic diversity, enables clone-level differentiation of NTM, and can identify new or rare mycobacterial species. We also have standardised MALDI-TOF to identify various NTM species from culture. These advanced technologies support clinicians in selecting the optimal, species-specific treatment, which is vital given the complex and diverse nature of NTM infections.

II. Spectrum of NTM infections and Management

Dr. P Vishnu Rao

ID Specialist Apollo Health City, Jubilee Hills Hyderabad

Nontuberculous mycobacteria (NTM) are increasingly recognized as important human pathogens, presenting with pulmonary, skin and soft tissue, musculoskeletal, and disseminated infections. In India, Mycobacterium avium complex and M. kansasii are common pulmonary pathogens, while rapidly growing mycobacteria such as M. abscessus, M. fortuitum, and M. chelonaeare often linked to post-surgical and device-associated infections. Diagnostic challenges include differentiating true infection from colonization and misdiagnosis as multidrug-resistant tuberculosis. Management requires prolonged, multi-drug regimens tailored to species and susceptibility, with macrolides central for MAC and multidrug combinations for rapidly growing mycobacteria; surgical intervention is often necessary. Limited diagnostic capacity, drug availability, and cost add to the challenge in India. This sessionwill review the spectrum, diagnostic pitfalls, and management strategies of NTM infections, with emphasis on practical approaches for resource-limited settings.

III. NTEP: Goals and Strategic Interventions towards TB elimination

Dr. Himanshu Vashistha

International Consultant- UNOPS

WHO SEARO

The National Tuberculosis Elimination Program (NTEP) aiming to eliminate tuberculosis (TB) by 2025—five years before the global target. NTEP implements the revised National Strategic Plan (NSP) to End TB 2017–2025, to achieve the TB specific SDG goals (baseline 2015) as 80% reduction in incidence, 90% reduction in mortality, Zero TB patients and their households face catastrophic costs because of TB disease. NTEP's holistic approach worked on four strategic pillars: Detect, Treat, Prevent, and Build (DTPB) [1, 2, 3]. Since baseline, the program has driven significant achievements, including 26.07 lakh TB cases reported in 2024 [17.7% decline in TB incidence (from 237 to 195 per lakh population between 2015–2023), 83% reduction in missing TB cases from 15 lakh in 2015 to 2.5 lakh in 2023, a reduction in TB deaths by 21.4% (28 to 22 per lakh), and historic highs in TB case notifications (26.07 lakh in 2024) [1, 2, 4].

Key strategic interventions from NTEP were implemented under NTEP [1, 2, 5, 6]: Roll out of Newer TB drugs: Improving treatment success rates from 68% to 75% (2020-2022) and reducing mortality rates by implementing newer safer BPALm regimens offering 80% success rates and reducing time to 6 months in DRTB treatment using novel drugs like Bedaquiline, Pretomanid, Linezolid.

Pradhan Mantri TB Mukt Bharat Abhiyan (PMTBMBA): To unite communities, adopt and support TB patients for 6 months with focus on nutritional, diagnostic, and vocational support (Nikshay-Mitra initiative) and recognized as the world's largest crowd-sourcing initiative for TB patient support. The scope is also expanded for distributing food baskets for household contacts of TB patients.

Ni-Kshay Poshan Yojana: Financial support for TB patients increased from ₹500 to ₹1000 per month. 12 lakh underweight TB patients (BMI<18.5) to receive energy-dense nutritional supplements (EDNS). Over ₹3202 crores disbursed to 1.13 crore beneficiaries through Direct Benefit Transfer.

Incentives for Asha, TB Champions and caregivers: Strengthening patient support systems. Ni-kshay TB notification incentive for the private sector.

Vulnerable population Mapping: 3 Lakh additional cases found via house-to-house screening focusing high-risk groups.

Ni-Kshay Portal: Web-based patient management system for real-time TB case registration and monitoring for TB surveillance. Over 1.51 crore TB patients receiving treatment, with 1.18 crore consenting to support as Ni-kshay Mitras.

Mathematical model: First ever Indigenous TB Burden model for state wise TB estimates.

Activation of Medical college task force: 560 colleges supporting TB detection and research.

Sub-National TB disease-free certification implemented: Regular surveys, drug sales tracking, under reporting assessments conducted.

Strong Multisectoral Partnerships: Collaboration with ministries, industries, NGOs and technical bodies.

Aligned with the Sustainable Development Goals and the End TB Strategy, NTEP's evidence-based, patient-centric, and innovation-driven interventions have positioned India at the forefront of global TB elimination efforts. Ongoing expansion of service coverage, digital monitoring, and multisectoral collaboration remain crucial for reaching the 2025 goal of a TB-free India.

MYCOLOGY SYMPOSIUM

I. Challenges and opportunities for research in clinical Mycology

Dr. Arunaloke Chakrabarti

Director.

Doodhadhari Burfani Hospital & Research Institute,

Bhupatwala.

Haridwar, India

Challenges in clinical mycology research include limited awareness about fungal diseases, fragile and expanding epidemiology, poor public health response, emergence of antifungal resistance, limited diagnosis, slow development of new antifungal agents, poor budget allocation in this field and lack of translational research. The challenges are more severe in low- and middle-income countries due to limited laboratories, lack of training in this field, poor availability and affordability of antifungals though the rate of fungal infections is very high in those countries. Opportunities for research lie in leveraging new omics technologies like genomics and proteomics in developing cost-effective rapid diagnosis, creating innovative management strategies with novel mechanisms, implantable management strategies in low-resource environment, strategies to control infection and antifungal resistance, stewardship programs, and fostering collaboration between researchers, clinicians and policy makers to address global public health threat due to fungal infections. The research targets can be classified as discovery (biology, ecology, host-pathogen interaction, antifungal drug and diagnostic targets), applied (epidemiology, diagnostics and therapeutics), translation (practice and policy), implementation (enablers, barriers, behaviors, economics, availability). The presentation will additionally cover evolving clinical studies, identifying gap in knowledge to formulate research questions, development of research infrastructure, networking and collaborative research, funding opportunities, rapid response to any challenge.

II. Challenges in the management of invasive fungal diseases

Dr. Rajeev Soman

Consultant - Infectious Diseases, Jupiter Hospital, Pune.

IFI are produced by a few important fungi. Although considered together, their clinical syndromes & the approach to diagnosis & management are distinct from one another. Hence, there is no exclusive pathognomonic sign of an IFI. Sepsis is mainly produced by Candida; pulmonary lesions by Aspergillus & P. jeroveci; meningitis by Cryptococcus; rhino-orbital-cerebral lesions by Mucorales. But each syndrome has alternative fungal, other microbial etiologies & non-infective diagnostic possibilities; & other infections can occur simultaneously or sequentially.

It is difficult to have an algorithmic approach to IFI. Awareness of the settings in which IFI occur is needed, biomarker, molecular diagnosis is helpful, but biopsy is needed in some IFI. Therapy may have to be in parallel while the diagnostic evaluation is going on. However, both diagnostic & therapeutic stewardship must always be considered thoughtfully. This can be discussed in the context of some illustrative cases. Resource limited settings have unique problems & some innovative & extrapolative solutions are needed to manage patients in those circumstances.

IFI are diseases of medical progress. More invasive procedures, immunocompromised patients, novel syndromes & resistant fungi are expected in future. They will be met with better diagnostics & AF agents & the see-saw of challenges & solutions will continue forever; keeping researchers, microbiologists & clinicians always on their toes.

III. Molecular techniques in clinical mycology

Dr. Shivaprakash M Rudramurthy

Professor, Medical Microbiology PGIMER, Chandigarh

The diagnosis of fungal infections has traditionally relied on direct microscopy, histopathology, and culture, which, although considered the gold standards, are often time-consuming, insensitive, and limited in their ability to identify species. The advent of molecular techniques has revolutionised clinical mycology, offering rapid, sensitive, and specific tools for the detection and characterisation of fungal pathogens. Polymerase chain reaction (PCR)-based assays, including real-time PCR, multiplex PCR, and nested PCR, have enabled the accurate detection of fungi directly from clinical specimens, significantly reducing turnaround times. Sequencing approaches, particularly next-generation sequencing (NGS), have expanded our ability to identify rare and emerging fungi. Molecular typing methods such as multilocus sequence typing (MLST), multilocus microsatellite typing (MLMT), amplified fragment length polymorphism (AFLP), and whole-genome sequencing (WGS) are increasingly used in outbreak investigations. Furthermore, molecular assays for detecting antifungal resistance, targeting mutations in ERG11, FKS1/2, CYP51A, and SQLE genes, are paving the way for personalised antifungal therapy. The integration of these techniques with automated platforms and artificial intelligence-driven bioinformatics tools is expected to further enhance diagnostic accuracy and clinical decision-making. Despite these advances, challenges remain, including the need for standardisation, validation, cost-effectiveness, and accessibility in resource-limited settings. Nevertheless, molecular diagnostics are rapidly bridging the gap between laboratory research and clinical application, positioning themselves as indispensable tools in the management of invasive fungal infections.

VIROLOGY SYMPOSIUM

I. Enhancing Laboratory Readiness and Building a Pathogen Diagnostic Index for Emerging Viral Threats

Dr. Pragya D. Yadav

Director-In-Charge
National Institute for One Health, Nagpur
Scientist 'F', Group Leader, Maximum Containment Facility
ICMR-National Institute of Virology
Pune, Maharashtra

India's public health system remains challenged by emerging and re-emerging viral infections due to dense populations, varied ecosystems, and zoonotic spill over events. The Indian Council of Medical Research (ICMR) has led the activities of building the nation's laboratory base along with establishment of containment laboratory, surveillance, outbreak response and preparedness. India's only BSL-4 laboratory at ICMR-NIV, Pune and the Virus Research and Diagnostic Laboratory (VRDL) network in the country, supported by rapid responses to outbreaks and strengthen laboratory diagnosis for Nipah, Crimean-Congo hemorrhagic fever, SARS-CoV-2, for SARS-CoV-2, Mpox, Avian influenza and many other viruses of public health importance. Yet, effective outbreak control is frequently hampered by disjointed system with respect to availability of validated diagnostic assays, different states of laboratory capabilities, as well as the absence of biosafety and validation criteria.

This makes the development of a Pathogen Diagnostic Index (PDI) of high priority. PDI would serve as a centralized, dynamic index of priority viral pathogens, diagnostic platforms, biosafety requirements, validation status and reference standards. It could help labs identify diagnostics options quickly, inform policymakers about where there are gaps in capacity, and support rapid deployment of resources in the event of the next public health crisis. The PDI will build upon ICMR's leadership in laboratory readiness and One Health approach to attach a zoonotic pathogens component and cross sectoral work. In parallel, enhancing the readiness of the labs involves quality control panel certification, development of specific indigenous assays, external assay quality control, and interconnected digital systems capable of real time data sharing.

Embedding the PDI into the proactive elements of India's outbreak investigation and preparedness plans will transform reactive responses into proactive approaches, enabling rapid detection and control of potential pathogens of concern. This will strengthen the public health security of India, and the region, and the globe, against pandemics.

II. Recent advances in the diagnosis of viral infections: Evolving Tools, Evolving Skillsets

Dr. Ira Praharaj

Scientist-F ICMR-Regional Medical Research Centre Bhubaneswar

Recent advances in viral diagnostics have been driven by a convergence of groundbreaking molecular technologies, moving beyond traditional methods to offer unparalleled speed, sensitivity, and depth of analysis. Next-Generation Sequencing (NGS) stands at the forefront, particularly metagenomic NGS, which provides an unbiased approach to pathogen discovery. In the context of viral diagnostics, three primary sequencing approaches are utilized, each with a distinct purpose. Whole-genome sequencing (WGS) focuses on sequencing the entire genome of a single, isolated viral strain. This method is crucial for high-resolution insights into a virus's genetic makeup, enabling precise strain typing and the identification of mutations that confer drug resistance. WGS is typically performed on a cultured viral isolate, which adds to the turnaround time. Targeted sequencing, in contrast, is more focused and efficient. It involves enriching a sample for specific viral sequences, often using probes or primers designed for a known pathogen or a set of pathogens. This approach significantly increases the proportion of viral reads, boosting sensitivity and reducing sequencing costs, making it ideal for screening known pathogens or tracking specific viral variants in a large number of samples. Lastly, metagenomic sequencing is a comprehensive, unbiased approach that sequences all nucleic acids in a sample, capturing a complete profile of all viruses, bacteria, and other microorganisms present. By sequencing all nucleic acids in a sample, it can identify known, unexpected, and even novel viruses in a single run, making it invaluable for syndromic diagnosis and outbreak surveillance. It is the gold standard for pathogen discovery and for identifying co-infections, but its broad nature requires significant sequencing depth and robust bioinformatic analysis to sift through the vast amount of host and non-viral genetic material.

However, the sheer volume of data generated by NGS necessitates the use of bioinformatics, which serves as the computational engine for analysis. The bioinformatic workflow involves meticulously filtering out host sequences, assembling viral genomes, and comparing them against vast databases. This process provides insights into viral evolution, tracks mutations associated with drug resistance, and traces transmission chains through phylogenetic analysis. Complementing these high-throughput methods are technologies designed for rapid, decentralized testing. CRISPR-based diagnostics, such as SHERLOCK and DETECTR, leverage the unique collateral cleavage activity of Cas proteins to generate a detectable signal upon binding to a target viral nucleic acid. These platforms can be integrated into simple, paper-based assays, enabling rapid point-of-care (POC) testing. Simultaneously, biosensors, often using nanomaterials, are offering real-time, label-free detection of viral particles or their components, promising to miniaturize complex diagnostic systems into "lab-on-a-chip" devices. The adoption of these sophisticated tools requires a significant shift in the required skillsets for laboratory professionals, microbiologists and virologists who must now possess a blend of traditional microbiology expertise and new competencies in bioinformatics, data analysis, and the principles of assay design. However, the true value of these technologies is contingent upon their clinical validation to ensure accuracy and clinical relevance. This includes demonstrating a test's analytical performance and its correlation with patient outcomes. Integrating these new methods into routine virological workups also requires carefully balancing their power with practical concerns like turnaround time (TAT). While rapid POC tests can guide immediate patient care decisions, NGS, with its longer TAT, is better suited for complex cases and public health surveillance. The ultimate goal is a tiered diagnostic approach where the right technology is deployed for the right purpose, ensuring patient care remains the top priority.

III. Emerging and Re-emerging viral infections in India

Dr. Rahul Dhodapkar

Professor Virology & Regional Influenza Lab JIPMER, Puducherry

Emerging and re-emerging viral infections pose a constant threat to global and national health security, with India being particularly vulnerable due to its dense population, rapid urbanization, ecological diversity, and close human-animal interactions. Over the past two decades, India has witnessed outbreaks of novel pathogens such as Nipah virus, Zika virus, Crimean-Congo hemorrhagic fever, Avian Influenza, Chandipura virus, and Kyasanur Forest Disease, alongside the resurgence of established threats including Dengue, Chikungunya, Japanese encephalitis, Influenza, Hepatitis A/E, Measles and rubella.

The COVID-19 pandemic further underscored systemic gaps in preparedness and response, emphasizing the urgent need for resilient health systems. Recent WHO updates highlight a shift from pathogen-specific preparedness toward a family-based approach, incorporating prototype pathogens and "Pathogen X" to address unforeseen threats. In the Indian context, strengthening surveillance networks such as the Integrated Disease Surveillance Programmer (IDSP) and Viral Research and Diagnostic Laboratories (VRDLs), enhancing diagnostic capacity, ensuring equitable access to vaccines, and fostering community engagement are critical interventions. A multisectoral One Health approach, integrating human, animal, and environmental health, is essential to mitigate the impact of future outbreaks. Proactive policy frameworks, sustained investment in research and development, and international collaboration are vital to reducing the morbidity, mortality, and socio-economic burden associated with emerging and re-emerging viral diseases in India.

ABSTRACTS - DR C.S. BHASKARAN AWARD FOR PG

1. Invitro efficacy of cefoperazone-sulbactam and other antimicrobials against carbapenem resistant non-fermentors of lower respiratory tract infections

Dr. Raakhee Baby Thananki, Jithendra Kandati, Department of Microbiology, ASRAM, Eluru

Background: The incidence of carbapenem-resistant, Non-fermenting Gram-negative organisms, isolated as the etiological agents of lower respiratory infections in elderly is ascending. The advent of novel antibiotics poses significant challenges, necessitating its optimization and utilization. Cefoperazone, a third-generation cephalosporin's and β -lactam antimicrobial, when combined with sulbactam, an irreversible β -lactamase inhibitor, alleviates the vulnerability of cefoperazone to β -lactamase-producing organisms. Regional data on the susceptibility/resistance patterns for this pharmacological combination remains scarce.

Objectives: To determine the invitro efficacy of cefoperazone-sulbactam and other antimicrobials against carbapenem resistant Nonfermenting Gram-negative isolates of lower respiratory infections.

Materials and Methods: A total of 113 non-fermenting gram-negative bacilli (NFGNB), comprising Acinetobacter baumannii (34), and Pseudomonas aeruginosa (79) obtained from clinical samples of patients with LRTI's, were included in the study. The identification and susceptibility testing were performed using the VITEK-2 and disk diffusion method. The minimum inhibitory concentrations (MICs) of antibiotics against carbapenem resistant isolates were determined. Results: The prevalence of CRPA and CRAB was found to be 18.98% and 35.29% with male-female ratio 2:1. Cefoperazone-sulbactam exhibited notable in-vitroactivity for both CRPA and CRAB. 72% of CRPA isolates were sensitive to aminoglycoside, amikacin. Minocycline and Trimethoprim/sulfamethoxazole were 42% and 23% effective against CRAB isolates. Colistin intermediate sensitivity was reported in majority of carbapenem resistant isolates. Amikacin sensitivity was good.

Conclusion: Cefoperazone-sulbactam demonstrated robust activity as well as amikacin. Increasing resistance for piperacillintazobactam against MDR Pseudomonas noted. Early detection of carbapenem resistant NFGNB can improve patient management. The present study can help in antibiotic policy formulations in our area, leading to better outcome and more timely treatments. The study will also help in antibiotic policy formulations, leading to better outcome and more timely treatments.

2. A Study on prevalence & antibiotic susceptibility pattern of Streptococcus pyogenes Among pediatric patients with acute pharyngitis at GMC, Anantapur.

Dr.K.Rajeswari, Dr. B. Shanti Reddy, Dr. B. Praveena, Dr.Praveen. Government Medical college, Anantapur

Objectives: To determine the prevalence and antibiotic susceptibility pattern of Streptococcus pyogenes (GABHS- Group A Beta hemolytic Streptococci) causing acute pharyngitis in children.

Materials and Methods: This was a prospective study conducted in the Department of Microbiology and Department of Paediatrics, GMC, Anantapur for a period of 3 months (April 2025 – June 2025). A total of 46 throat swabs were collected between 3 to 12 years of age group having symptoms of acute pharyngitis. Bacterial culture was done and Streptococcus pyogenes were isolated and identified based on type of hemolysis, biochemical reactions. Antibiogram were obtained by Kirby Bauer disc diffusion method according to CLSI guidelines.

Results: The prevalence of GABHS was about 13 (28%) among 46 patients. Out of 13 patient, 7 (54%) children were in the age group of 5-10 years. Organisms like Staphylococcus aureus 3 (6.5%), Streptococcus pneumoniae and other beta hemolytic Streptococci 7 (15.2%) were also isolated.

Erythromycin, clindamycin and vancomycin are 100% susceptible whereas Penicillin,

Amoxycillin, Chloramphenicol, Cefoxitin are 92.3%,84.6% ,92.6% respectively. Azithromycin, Tetracycline, Levofloxacin were least susceptible.

Conclusion: In our study population, 28% of acute pharyngitis patients have isolated with Streptococcus pyogenes. Children aged 5 to 10 years were more susceptible to Streptococcus pyogenes. Almost all antibiotics were susceptible to GABHS except Levofloxacin, Tetracycline. Therefore, screening of GABHS before prescribing antibiotics is necessary.

3. Study on colonisation or infection with Candida auris and source tracing at a tertiary care hospital in South India.

Dr. Saria Fatima, Dr. P. Umabala, Dr. Sukanya Sudhaharan, Dr. P. Padmaja, Dr. M.V.S. Subbalaxmi, Nizams Institute of Medical Sciences, Hyderabad

Aim and Objectives: To study the demography, risk factors, clinical features, diagnosis, and management of patients with Candida auris infection or colonisation. To screen patients, neighbouring ward-mates for colonisation, healthcare workers for hand carriage and hospital environment for contamination with C.auris.

Materials and Methods: This was a prospective non interventional observational study conducted from January'2024 - December'2024.All adult patients admitted in NIMS hospital with isolation of C.auris from their clinical samples obtained from sterile and non sterile site specimens were included. All clinical specimens were processed according to laboratory SOP and candida isolates grown from clinical samples were identified definitively to the species level by MALDI-TOF MS.

After identification, informed consent was taken for collection of screening swabs. Patient records were reviewed for clinical & demographic data and the case was followed up until discharge. Environment surfaces were swabbed and hand wash of healthcare workers were taken and inoculated on CHROMagar™ Candida Plus and Selective Auris Media. Guidance on Infection control was explained to treating unit's healthcare providers. The antifungal susceptibility testing of clinical isolates was performed by using the Clinical and Laboratory Standards Institute broth-micro dilution method M27-A3/S4.

Results: Out of 27 patients, 55.5% had invasive infections and 44.5% were colonised with Candida auris. Blood was the most common site of isolation (48.1%), followed by central line tips (25.9%) and urine (22.2%). The median age of affected patients was 45 years, with 18% being elderly. Male:Female ratio was 23:4. Major risk factors included anemia, prior hospitalisation, ICU stay, hypoalbuminemia, diabetes, recent surgery, and use of invasive devices. All patients had prior exposure to broad-spectrum antibiotics. High resistance was seen to fluconazole (100%) and amphotericin-B (45%), while echinocandins showed 0% resistance rates. Patients and neighbouring wardmates showed colonisation, detected majorly from groin and axillary composite swabs. Environmental screening revealed multiple contaminated high-touch surfaces, and hand carriage among healthcare workers was also detected. CHROMagar™ Candida Plus consistently detected more positives across all sample types. Mortality was 22.2% among infected patients.

Conclusion: In this study, Candida auris showed broad distribution throughout the hospital, with high antifungal resistance, transmissibility and high levels of antifungal resistance with frequent environmental contamination.

ABSTRACTS - RANGARAYA MEDICAL COLLEGE AWARD FOR SENIOR FACULTY

1. Dermatophytosis: Clinicoepidemiological and mycological profile of patients at a teaching hospital in southern India.

Dr. Dhanashree P Inamdar, Mr. Jayanth Jakka, Dr. B. Anuradha, Mamata medical college and Hospital, Khammam

Aims and Objectives: To determine the clinico-epidemiological profile of patients with dermatophytosis, knowledge about use of overthe-counter drugs, and to determine the mycological profile of these infections.

Materials and Methods: A prospective observational study of 8 months duration was carried on patients clinically suspected with dermatophytosis for first time at our setup. Relevant samples were collected. Potassium hydroxide (KOH) mount and culture in Dermatophyte test medium (DTM) and Sabouraud dextrose agar were done.

Results: Males were commonly affected (59.79%). 31 to 40 years age group was most affected (26.8%). Most patients were graduate (35.05%) and belonged to middle class (38.14%). About 72.16% of patients belonged to a rural background. Among the environmental factors, 29.90% of patients had contact history with affected family member and 11.34 % gave history of animal contact. Tinea corporis was the most common clinical variant (45.36%). 72.16 % of patients had been treated with antifungals by local doctors before visiting our setup. Fungal growth was seen in 25.78% samples. Trichophyton mentagrophytes was commonest fungal isolate(14/25: 56%).

Conclusions: This study highlights the clinico-epidemiological features and mycological profile of dermatophytic infections along with environmental factors associated with it.

2. Bacterial infections among deceased donor Liver transplant recipients in the immediate post-transplant period

Dr. Lakshmi Vemu, Dr. Ganesh P & Dr. Mehar Lal Pradeep, Kamineni Academy of Medical Sciences & Research Centre, Hyderabad

Aims and Objectives: Liver transplant recipients are prone to develop numerous infectious complications because of immunosuppression, surgical interventions, and malnutrition. This retrospective study documents the bacterial infections among deceased donor liver transplant recipients in the immediate post-transplant period.

Material & Methods: Data from 60 recipients (50 males & 10 females) who underwent DDLT, between January 2024 to June 2025 (18 months), at Kamineni Academy of Medical Sciences, Hyderabad, is included in the study. Bacterial and fungal infections in the immediate post-transplant period and the major risk factors for infections among the recipients were analysed. All the recipients received meropenem, teicoplanin & fluconazole during and upto 6 days of surgery. Infection control was strictly followed within the liver transplant unit along with regular environment control.

Results: Bacterial and fungal infections were documented among 28 /60 (47%) recipients, within a median time to infection of 6 days. Though 29/60 donors were infected pre transplant, except for 2 recipients, none of the infections were transmitted to the recipients. Two of the recipients died due to transplant rejection and overt infection. Single site infection was documented among 17/28 (60.7%) recipients, while 11/28 (39.3%) recipients had infections at two or more sites. The most common sites of infection were the abdominal drains (20/28,71.4%) mainly due to Enterococcus faecium (9/20, 45%) and Coagulase negative Staphylococcus (7/20, 35%). Other sites of infection were blood stream 5/28 (17.5%) endotracheal secretions 4/28 (14.3%). Multi drug-resistant Gram-negative infections were 8/28 (29%). Candida species were isolated from 4/28 (14.3%). The major risk factors for infection among the recipients were diabetes, hypertension and increased ALT levels during the early post-transplant period.

Conclusions: Enterococcal infections were the predominant organisms among the recipients. The infections could be managed successfully with appropriate prior antibiotic therapy, during and after transplant.

ABSTRACTS - SMT. B.S. LAKSHMI AWARD FOR JUNIOR FACULTY

1. Phenotypic and Genomic Characterization of Cefiderocol Resistance in Clinical Isolates Using Whole Genome Sequencing

Dr K. Chakrapani Yadav, Dr. B. Sreekanth Reddy, Dr. A. Renuka Devi, Dr. B. Naga Jyothi. Kurnool Medical College, Kurnool

Introduction: Carbapenem-resistant Gram-negative bacteria (CR-GNB) are a serious health threat because treatment options are limited. Cefiderocol, a novel siderophore cephalosporin, has emerged as a promising last-resort antibiotic, but some bacteria are becoming resistant. Resistance mechanisms are complex and may involve alterations in iron uptake systems, efflux pumps, and β -lactamase production, including metallo- β -lactamases and novel genetic determinants. Understanding the molecular basis of cefiderocol resistance is critical for guiding treatment strategies.

Aims & Objectives: To assess cefiderocol susceptibility in CR-GNB using disc diffusion and confirm resistance via MIC determination in iron-depleted cation-adjusted Mueller Hinton broth (ID-CAMHB). To perform whole genome sequencing (WGS) of cefiderocol-resistant isolates to identify resistance genes and mechanisms.

Materials and Methods: A total of 150 CR-GNB isolates were recovered from clinical specimens and identified using the VITEK 2 system. Cefiderocol susceptibility was screened by disc diffusion, and resistant isolates were confirmed through MIC testing using ID-CAMHB. ³⁴ Two resistant isolates (one E. coli, one K. pneumoniae) were selected for WGS using the Illumina platform. Bioinformatics analysis was conducted to identify resistance genes and mobile genetic elements.

Results: Among 150 CR-GNB isolates, only 6 (3 K. pneumoniae, 3 E. coli) showed cefiderocol resistance. We report the first genomic study from India on cefiderocol-resistant Escherichia coli (ST167, O101:H9) and Klebsiella pneumoniae (ST6260, K17:O1/O2v1). WGS revealed the presence of blaNDM-5, along with multiple other resistance genes (rmtB, aadA2, mph(A), erm(B), dfrA12), indicating a multidrug-resistant phenotype.

Conclusion: Cefiderocol was effective against most CR-GNB, particularly non-fermenters. Resistance was noted in some E. coli and K. pneumoniae isolates carrying blaNDM-5 and other resistance genes. Continuous phenotypic and genomic surveillance is essential for guiding cefiderocol use in clinical settings.

2. Screening of Antenatal women for vaginal Microbial colonization presenting to a Tertiary care Hospital

Dr. Y. Kathyayani, Dr. L. Jaya Lakshmi. GMC Guntur

Introduction:: Pregnant women are at risk of high vaginal infection rates stemming from hormonal & pH changes, and from greater vaginal glycogen stores. Several obstetric complications such as pre-term labor, amniotic fluid infection, premature rupture of themembranes and low birth weight of the neonate leading to high perinatal mortality. In developing nations, the diagnosis and treatment of vaginal infections in pregnant women is solely based on clinical signs and symptomatology.

Aims & Objectives: To assess the prevalence of vaginal microbial colonization in antenatal women.

Materials & Methods: This prospective cross sectional study has been conducted in the Department of Microbiology, Guntur medical college/Govt General Hospital, Guntur for a period of 4 months from March to June 2025. Two vaginal swabs with Amies Transport medium were collected from each patient. One swab was subjected for wetmount, Gram staining, culture on SDA, Blood Agar. Another swab was enriched in Todd Hewitt Broth supplemented with Colistin Nalidixic acid and Gentamycin and inoculated on Hi Crome™ Strep B Selective agar for isolation of Group B Streptococci and incubated in candle jar and processed according to standard guidelines.

Results: A total of 66 samples were processed. Out of 66 antenatal women with >35 weeks gestation, 17 were primigravida and 49 were multi gravida. Majority were in the age group of 21-25 years. 17 were symptomatic. Microscopy revealed budding yeast cells in 16 samples and clue cells seen in 6 samples. Culture was positive in 28 samples (42%) with Candida albicans (12%), Mobiluncus (1.5%), Enterococcus(6%), Candida tropicalis (4.5%), Candida krusei(4.5%), Escherichia coli(1.5%), Klebsiella pneumoniae(1.5%),Staphylococcus aureus(1.5%), Lactobacilli(6%) and Candida parapsilosis (3%).

Conclusion:The isolates in the present study were potentially pathogenic and hence regular screening in antenatal women at appropriate time can prevent the preterm births and neonatal complications.

3. Cytomegalovirus reactivation in patients undergoing hematopoietic stem cell transplantation in a south Indian tertiary cancer center

Dr. Sravanthi CH, Dr. D Radharani, Dr. Swathi Nayani, Dr. B. Pavankumar, Dr. Veerendra C Patil. Basavatarakam Indo American Cancer Hospital and Research Institute

Objective: The aim of this study is to determine the incidence and timing of Cytomegalo virus (CMV) reactivation following Haematopoetic stem cell transplantation (HSCT) at a tertiary cancer center and to assess the relationship with donor/recipient CMV serostatus. The following parameters were used as endpoints: Median time to first reactivation after the HSCT, Number of CMV reactivations for the observed period and CMV viral load alongside with the predetermined CMV Donor / Recipient status.

Materials and methods: This prospective observational study includes 68 patients who underwent HSCT for malignant and non-malignant disorders at Basavatarakam Indo American Cancer Hospital and Research Institute between January 2023 to December2024. All donors/recipients have undergone testing for CMV IgG antibodies using Enzyme linked fluorescent assay VIDAS CMV IgG Kit (Biomerieux). Weekly CMV DNA PCR was performed from day +28 to +100 post-transplant using the Real-Time quantitative polymerase chain reaction (RT-PCR).

Results: Of the 68 patients who underwent HSCT, the incidence of early CMV reactivation after HSCT in our center is very high 77.2% (n=53) most likely related to the high-risk donor/recipient (D/R) profile of our recipients. The mean period from HSCT to the first positive PCR result was quite short, 29.5 days on average. The most frequent indication for HSCT was Acute Myeloid leukemia (45.5%), followed by Acute lymphoblastic leukemia (30.8%). Pretransplantation CMV seropositivity was 82.3% for the recipients and 88.2% for the donors. The median age of the study cohort was 20 years (range, 1 to 63 years), and the male: female ratio was 1.5:1. The highest-risk group donor- / recipient+ (D-/R+) experienced the longest and the highest levels of viraemia, as well as the highest number of reactivations. Graft versus host disease (GVHD) occurred in 29 patients (43%). 20 had both acute and chronic GVHD, and 10 had chronic GVHD only.

Conclusion: Our study reinforces the importance of routine CMV monitoring in high-risk HSCT recipients using reliable and sensitive laboratory methods, such as Quantitative RT-PCR. Early detection post-transplant allows timely pre-emptive therapy and may prevent progression to CMV disease particularly in D-/R+ pairs and those with GVHD.

4. ZOONOTIC ZINGERS: A Novel One Health-Based, Faculty-Mentored, Student-Led Operational Model in Microbiology Education.

Dr. Wajiha Iftekhar, Dr. Yona Manchikalapati, Dr. S. Aruna. Neelima Institute of Medical Sciences, Hyderabad

Introduction: Zoonotic diseases remain a critical global health challenge. However, traditional teaching methods often fail to capture the attention and imagination of Generation Z learners, who are digital natives with a preference for visual, humorous, and interactive content. To address this gap, the Department of Microbiology at Neelima Institute of Medical Sciences, Hyderabad, under the COHESION (Consortium for One Health Education, Scientific Innovation and Outreach Network) banner, launched an innovative initiative—Zoonotic Zingers—a meme-based learning contest designed to blend scientific rigor with creativity and humor to enhance zoonosis awareness.

Aim and Objectives: To evaluate the utility and educational impact of a meme contest as a creative, cost-effective pedagogical tool for: Reinforcing undergraduate understanding of zoonotic diseases, Promoting One Health literacy and public health advocacy, Enhancing digital fluency and student engagement in microbiology education.

Materials and Methods: The Zoonotic Zingers contest, conducted on 30th June 2025, was a fully online event with the theme "Meme it, Mean it – The Zoonotic Way." Over 80 MBBS students across all academic years participated. Each entry was judged based on scientific accuracy, creativity, humor, and clarity of the public health message. A structured pre- and post-event Knowledge, Attitude, and Practice (KAP) survey was deployed to assess impact on conceptual understanding, attitudes toward One Health, and students' confidence in applying zoonosis-related knowledge.

Results: The contest received enthusiastic participation and positive feedback. Winning entries—such as those on rabies, brucellosis, leptospirosis, toxoplasmosis, and scrub typhus—demonstrated scientific depth and originality. The KAP survey revealed: A significant improvement in awareness of zoonotic transmission and clinical features, Greater acceptance of creative pedagogy as a valid learning approach, Increased confidence among students to communicate public health topics using digital media. Faculty reviewers noted enhanced retention of microbiological concepts and stronger peer interaction. Certificates were awarded by the Dean to winners and participants, further boosting morale and institutional support.

Conclusion: Zoonotic Zingers proves that meme-based pedagogy, when integrated into formal medical training, can powerfully enhance microbiology education. By transforming passive learning into participatory, student-led engagement, such initiatives not only improve knowledge outcomes but also foster advocacy and creativity—skills essential for future-ready clinicians in a digitally driven world. This replicable model aligns well with One Health objectives and 21st-century educational standards.

5. Detection of Aquaporin 4 and Myelin -Oligodendrocyte Glycoprotein (MOG) Antibody by indirect immunofluorescence assay (IIFA) in the Diagnostic Workup of Demyelinating diseases of Central nervous systems

Dr Rafath Fatima. KIMS Secunderabad

Aim and Objective of the Study: To detect the presence of antibodies to AQP4, MOG in patients with Suspected Demyelinating diseases of Central nervous systems.

Materials and Methods: The present laboratory based descriptive observational study was carried out in the Department of Microbiology, from January 2024 to May 2025. A total of 125 serum samples were processed for this study. Demographic data (such as age, sex, in-patient, out-patient status) of the patients were recorded. IIF-AQP4 and Anti Myelin -Oligodendrocyte Glycoprotein IIFT were performed using EUROIMMUN, AG, Luebeck, Germany. Anti-Aquaporin -4 and Anti Myelin Oligodendrocyte Glycoprotein was detected by IIF in a screening dilution of 1:10. The fluorescent intensity of each sample was compared to both negative and positive controls.

Results: Total of 125 serum samples were received for testing AQP4 and Anti Myelin -Oligodendrocyte Glycoprotein. Of the 125 samples 5 (4%) samples tested positive for Aquaporin-4 and 4 (3.2%) samples tested positive for MOG. All the positive sample had correlated with clinical findings.

Conclusions: Antibodies targeting aquaporin-4 (AQP4-IgG) and myelin oligodendrocyte glycoprotein (MOG-IgG) have facilitated the diagnosis of that were previously considered to be atypical presentations of multiple sclerosis (MS) or idiopathic and represent major advancements in the field of autoimmune neurology. Increased awareness of appropriate testing strategies for AQP4-IgG and MOG-IgG is crucial for ensuring accurate diagnosis and timely, effective management of these distinct Demyelinating diseases of Central nervous systems.

ABSTRACTS - SRI. B. KRISHNA RAO MEMORIAL PRIZE FOR POST-GRADUATES

Genotypic analysis of virulence determinants and antimicrobial susceptibility in Uropathogenic Escherichia coli isolates from UTIs

Dr. Veeramalla Shivani, Dr. V. V. Shailaja, Dr. L. Prashanthi, Government Medical College, Siddipet

Aim and Objectives: To detect the virulence markers of Uropathogenic E. coli (UPEC) from urinary tract infections (UTIs) and study their antimicrobial resistance.

Materials and Methods: A cross-sectional study was conducted from March 2025 to May 2025 on urine samples received in a microbiology laboratory of a tertiary care hospital. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disc diffusion method following CLSI guidelines. PEC isolates were screened genotypically for virulence factors such as hemolysin, cytotoxic necrotizing factor by PCR.

Results: Out of the total 280 urine samples, 61 Escherichia coli isolates were confirmed as UPEC. Among 61 isolates which were tested genotypically for virulence factors hemolysin and cytotoxic necrotizing factor by PCR, hemolysin was found to be most predominant. High resistance to cephalosporins and Amoxicillin clavulanic acid was observed. Nitrofurantoin and amikacin showed good efficacy. Virulence factors and antibiotic resistance of the isolates were correlated.

Conclusion: This study highlights the correlation between virulence determinants and antimicrobial resistance in UPEC, aiding in the development of targeted treatment and infection control in UTI cases.

2. Evaluation of Clostridioides difficile markers, Glutamate dehydrogenase (GDH) enzyme and Toxin A/B in diarrhoea samples

Dr. Poolla Sridivya, Dr. Prasanthi Kolli, Dr. B. Venkata Rao, Govt. Siddhartha medical college, Vijayawada

Aim and Objectives: Detection of Clostridoides difficile nontoxic marker Glutamate dehydrogenase in stool, Detection of Clostridoides difficile toxin in GDH positive stool samples

Materials and Methods: This Cross sectional study was conducted over a period of 6 months at VRDL (ICMR lab), Dept of Microbiology, Govt. Siddhartha Medical College, Vijayawada. Stool samples were obtained from 50 adult patients presented with diarrhoea. Clinical and demographic data was obtained. All the stool samples were tested for Clostridoides difficile Glutamate dehydrogenase enzyme (GDH) and Clostridoides difficile toxin A/B by ELISA.

Results: Out of 50 diarrheal stool samples 46% were in the age group of 41-60 yrs, 28% were in 18-40 yrs followed by 26% in 61-80 yrs. There was equal distribution of both genders. In the study group along with diarrhea 40% were with complaining of pain abdomen, 34% vomiting and 22% fever. 20% had no other complaint other than diarrhoea. All the 50 diarrheal stool samples were tested for GDH, out of which 13 (26%) were GDH positive. GDH positive samples were tested for C.difficile toxin A/B where 2 were positive both the cases were elderly aged above 55 yrs.

Conclusion: In C.difficile infection high expression of GDH enzyme makes GDH a reliable initial screening marker for detection of C.difficile. To differentiate active infection from colonization GDH positive stools can be screened for C.difficile toxin. This data provides inputs to Clinicians and HICC teams to focus on diarrheas associated with antibiotic use and to strengthen antibiotic polices and antibiotic stewardship.

3. Detection of synergism between Ceftazidime-Avibactam and Aztreonam by disk stacking plus Micro-Elution method in metallo beta-lactamase producing gram negative bacilli isolated from various samples of Intensive Care Units

Dr. Kesava raj. N, Dr. S. Swapna, Dr. C. Siva Kalyani, Dr. P. Ratna kumari, MD, Andhra Medical College, Visakhapatnam.

Aim and Objectives: To isolate Metallo-beta-lactamase producing Gram Negative Bacilli (GNB) and to evaluate a disk stacking plus micro-elution technique for rapid detection of the synergistic effect of Ceftazidime-Avibactam and Aztreonam against Metallo-beta-lactamase-producing GNB.

Materials and methods: A prospective study was conducted in Department of Microbiology from January 2025 to March 2025 on various samples, including blood, urine, and exudates received in the microbiology laboratory from Intensive Care Units (ICU) of King George Hospital, Andhra Medical College, Visakhapatnam. The isolated carbapenem resistant GNB were screened for Metallo-beta-lactamases production using Imipenem and Imipenem EDTA by phenotypic combined disk diffusion method, which were further processed for detection of synergism for Ceftazidime-Avibactam and Aztreonam by disk stacking with micro-elution by placing both disks one above another on an inoculated Muller Hinton agar and eluting with 20 μl of sterile normal saline and incubating at 37°C for 24 hrs. The zone diameters were interpreted according to Aztreonam breakpoints as per CLSI 2024 guidelines. The isolates with Aztreonam and Ceftazidime/Avibactam were resistant individually, while susceptibility or intermediate to Aztreonam in the presence of Ceftazidime/Avibactam discs on top confirmed synergy.

Results: Out of the total 1080 samples received during this study period, blood samples were 480(45%), urine samples were 380(35%), and exudate samples were 220(20%). Out of 1080 samples, 212(20%) were culture-positive GNBs, in which 82(39%) isolates were Carbapenem resistant strains. Among 82 samples, 51(62%) were Metallo-beta-lactamase-producing GNBs. All 51 GNBs were processed for the synergy test, and 36 (72%) isolates showed synergism.

Conclusion: Disk stacking plus the micro-elution method provides a rapid and simple practical approach for Ceftazidime/Avibactam plus Aztreonam synergy. This may potentially guide its targeted clinical application in patients with Metallo-beta-lactamase-producing GNB infections.

4. A comparative evaluation of methods to detect synergy between Ceftazidime-avibactum and aztreonam among metallo-beta-lactamases producing Enterobacterales in patients attending tertiary care hospital

Dr. V Avinash Kumar, Dr. Ch. Sulakshana Sony, Dr. Padma Priya, Government Medical college and Hospital, Ongole

Aim and Objectives:To demonstrate the synergy between CAZ-AVI and ATM in patients with infections caused by MBL-producing Enterobacterales--To isolate and identify Metallo-Beta-Lactamase producing Enterobacterales, To study synergy between CAZ-AVI and ATM among the isolated MBL producing Enterobacterales

Materials and Methods: This prospective study was conducted in the Department of Microbiology, GMC Ongole, over 3 months using a convenient sampling technique by E-strip method, Disc diffusion method, Broth disc elution test.Inclusion criteria: All age groups and both genders, strains of MBL producing Enterobacterales. Exclusion criteria: Strains other than Enterobacterales, patient who have not given informed consent.

Results: Out of 163 clinical samples, 98 (60.1%) were culture positive. Among these, 69 (42.3%) were Gram-negative and 29 (17.7%) were Gram-positive isolates, while 65 (39.9%) were culture sterile. From the Gram-negative group, 30 isolates were confirmed as MBL producers using standard screening and confirmatory tests. Among 30 MBL-producing isolates: Disc Elution Test: 23 (76.7%) sensitive, 7 (23.3%) resistant. E-strip: 22 (73.3%) sensitive, 8 (26.7%) resistant. Disc Diffusion: 19 (63.3%) sensitive, 11 (36.7%) resistant. Compared to the Disc Elution Test, E-strip method demonstrated Sensitivity 78.26%, specificity 42.86%, positive predictive value (PPV) 81.82%, and negative predictive value (NPV) 37.50%. The Disc Diffusion method showed Sensitivity 60.87%, specificity 28.57%, PPV 73.68%, and NPV 18.18%.

Conclusions: The Disc Elution Test remains the most accurate phenotypic method for detecting antimicrobial susceptibility in MBL-producing Gram-negative organisms.

5. Re-Emergence of Vaccine-Preventable Diseases – A Study on Measles and Rubella Cases at a Tertiary Paediatric Care Centre, Hyderabad

Dr. Syed Abdul Aziz, Dr. B. Sujatha, Osmania Medical College, Hyderabad

Aims and Objectives: To assess the re-emergence of vaccine-preventable diseases, specifically measles and rubella, through analysis of clinical, laboratory, and vaccination data of reported cases at a tertiary paediatric care centre in Hyderabad.

Materials and Methods: This retrospective observational study was conducted over 15 months, from January 2024 to March 2025, at a tertiary paediatric centre in Hyderabad, Telangana. All suspected fever with rash (FR) cases in children under 15 years with relevant symptoms were included. Data on demographics, vaccination status, and clinical features were recorded. Laboratory confirmation was done using IgM ELISA (Enzyme-Linked Immunosorbent Assay). Measles and Rubella RT-PCR (Reverse Transcription Polymerase Chain Reaction) was used for additional confirmation or inconclusive serology.

Results: A total of 141 confirmed cases were recorded: 116 (82%) were measles-only, 9 (6%) rubella-only, and 16 (11%) co-infections. Measles RT-PCR was performed in 86 cases and rubella RT-PCR in 18. Over 60% of measles cases were in unvaccinated children, including 27% who were infants not yet eligible for vaccination. Rubella occurred mainly in vaccinated or non-eligible individuals (77.8%).

Conclusion: The resurgence of measles and rubella in a tertiary care paediatric setting underscores a critical public health challenge—not of vaccine failure, but of systemic and social vulnerabilities. many of whom were either too young or had missed scheduled doses due to gaps in service delivery, awareness, or accessibility. This pattern reflects the urgent need to strengthen routine immunization programs, reinforce community engagement, and ensure equitable coverage, especially in underserved populations.

6. Detection of tst Gene in MRSA Isolates at a Tertiary Care Hospital

Dr P Sai Avinash, Dr B Venkata Rao, Dr Kolli Prasanthi, Dr D Sarada, Mrs P Sowmya

Aim and Objective: Detection of tst gene among MRSA isolates from clinical specimens in a tertiary care hospital.

Material and Methods: A cross-sectional study was conducted in VRDL (DHR-ICMR network labs), Dept of Microbiology, Govt. Siddhartha Medical College, Vijayawada over a period of 3 months. All the clinical samples were processed for culture by standard laboratory methods. Among the culture positives, Staphylococcus aureus isolates resistant to cefoxitin were considered as methicillin resistant. These isolates were subjected to PCR for detection of tst Gene using specific primers.

Results: Among 95 consecutive Staphylococcus aureus isolated during the study period, 42 isolates were Methicillin resistant, of which tst was detected in 41% (17) of isolates. Presence of tst gene was more (70%) from isolates of Surgical units followed by (30%) Obstetrics and Gynaecology.

Conclusion: As the study indicates a notable risk for TSS from MRSA isolates, surveillance of both antibiotic resistance and virulence genes is critical for early detection, management and prevention strategies.

7. Evaluation of Clinical & Microbiological spectrum of Continuous Ambulatory Peritoneal Dialysis (CAPD) infections by Conventionalculture method and Automated Bact/Alert Blood culture system.

Dr. Ruqaiya Begum, Dr.Kanne Padmaja, Dr.Swarnalatha, Dr.Vijay Dharma Teja, Nizam Institute of Medical Sciences, Hyderabad.

Background: Continuous Ambulatory Peritoneal Dialysis (CAPD) is a commonly used treatment for end-stage renal failure (ESRF) to remove metabolic waste and excess fluids. However, peritonitis remains one of the most frequent and serious complications of CAPD, often leading to catheter failure, treatment discontinuation, or increased morbidity and mortality. Rapid diagnosis and appropriate antibiotic therapy are essential for better outcomes.

Aim and Objectives: To evaluate the performance of conventional culture method and automated Bact/Alert Blood culture system in analysis of CAPD infections. To analyse the clinical risk factors and Antimicrobial susceptibility patterns of the culture positive isolates by Vitek 2 system. To study the management and outcome of CAPD peritonitis patients.

Materials & Methods: A Prospective study of total78 cases of CAPD peritonitis fluid samples were collected from patients at Nizams Institute of Medical Sciences over one year from ARCU and Nephrology wards. All the isolates were identified by standard culture methods.

Results: Among 78 CAPD samples, the Culture Positive cases were 26/78 (33.33%) and Culture Negative cases were 52/78 (66.67%). Abdominal Pain (52/78, 66.67%) was the most common presentation followed by fever (51/78, 65.38%). Among Gram negative pathogens 19.3% of isolates were Escherichia coli followed by Gram positive pathogens Coagulase Negative Staphylococci (CONS15.3%). Conventional Pre-Centrifugation method showed 6.41% and Post centrifugation showed 19.23% culture positivity. Precentrifugation by Bac/Alert showed 21.79% positivity and 33.3% by BacT/Alert Post-Centrifugation method. Time to Detection (TTD) was 26-36hrs by conventional Pre centrifugation and 12-24hrs by Post centrifugation. TTD for BacT/Alert Pre-Centrifugation was 4-6 hrs and Bact/Alert Post-Centrifugation was 1-3 hrs. Relapse peritonitis were 19.2% of cases followed by Repeat Peritonitis of 11.5% and 7.7% of Refractory peritonitis cases.

Conclusion: This study emphasized the importance of Automated systems over Conventional culture methods inincreasing the culture positivity and reduced time to detection. It also showed that centrifugation of the CAPD samples increased the yield of culture rate.

ABSTRACTS - Sri. N. VENKATA SIVA PRAMATHA MEMORIAL PRIZE Health Care Associated Infections

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS009	Dr D Spurthy Dr Manisha S Mane Dr S Saba Dr G S Chetana	ESIC Medical College and Sanathnagar, Hyderabad	Scrupulous look at the Ventilator-Associated Pneumonia(VAP) in ICU patients and attempts to increase bundle compliance and documentation in a Tertiary Care Centre
ABS029	Dr Chetana G S Dr D Spurthy Dr Manisha S Mane	ESIC Medical College Sanathnagar, Hyderabad	Optimizing postexposure HIV prophylaxis after needlestick injuries: The role of risk assessment stratification protocol in helping healthcare workers make informed decisions
ABS073	Dr Sravanthi Brungi Dr. Roopa. C	SVS Medical College and Hospital, Mahabubnagar	Evaluating the Effectiveness of Self Directed Learning Activity on sterilization and disinfection method for Second Year MBBS Students
ABS112	Dr Nayini Swathi Dr Radha Rani Dr Sravanthi Ch	Basavatarakam Indo American Cancer Hospital and Research institute, Hyderabad	Line-associated bloodstream infection (CLABSI) in paediatric cancer patients in a tertiary care cancer hospital
ABS142	Dr. M Sasidhar Dr. Kanne Padmaja Dr. M.NageswarRao Dr. Padmaja Sahu Dr. Vijay.Dharma Teja	Nizams Institute of Medical Sciences, Hyderabad	Prospective Surveillance of Central Line Associated Blood stream Infections(CLABSIs) in Intensive Care Units (ICUs) of a Tertiary care center
ABS179	Dr Malisetti Kanakarama Krishnaveni	Krishna Institute of Medical Sciences, Hyderabad	Curtailing hidden dangers causing nosocomial infections in a neonatal intensive care unit
ABS227	Dr Heena Tak Dr. M.A.K.V.Raju Dr.Arun Bhupati	Vishnu Dental College, Bheemavaram	Disarming the Hidden Reservoir: Targeting Microbial Load and Biofilm in Dental Unit Waterlines Using VOXOL – A Chlorine-Based Solution

FREE PAPERS - GIMSR AWARD IN MYCOBACTERIOLOGY FOR FACULTY

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS117		Hospital Sanathnagar Hyderabad	Impact of the 100-Day TB Program in Telangana Districts and the Contribution of Medical Colleges towards the National Goal of TB Elimination

FREE PAPERS - ABSTRACTS

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS002	Dr Viswanadhapalli Vidya sagar Dr. K. Ramalakshmi Dr. N. Lakshmi	Government Medical College Srikakulam	Seroprevalence of Malaria by RDT in a tertiary care hospital
ABS011	Dr. Sandhiya A Dr. L. Jaya Lakshmi Dr. P. Queeni Leena	Guntur Medical College, Guntur	Seroprevalence of Lyme Disease Among Clinically Suspected Cases in a Tertiary Care Hospital.
ABS025	Dr.Mirza Ambreena Parveen Dr JK Surekha Dr Farheen Banu	Gandhi Medical College Secunderabad	Comparison of Antimicrobial Resistance in Pseudomonas aeruginosa from intensive care and non intensive care units in a tertiary care centre in Telangana.
ABS033	Dr.Saraswathi Dr. S. Swapna Dr. C. Siva Kalyani Dr. P. Rathna Kumari	Andhra Medical College Visakhapatnam	Microbiological Profile and Antibiogram of Septicemia in Burn Patients in a Tertiary Care Hospital
ABS036	Dr LS Lovely Lalnghatzo Dr. S. Swapna Dr. P. Ratna Kumari	Andhra Medical College Visakhapatnam	Antibiogram of Acinetobacter species isolated from various clinical samples in a tertiary care hospital.
ABS046	Dr. Lateef Fatima Dr. Nanditha A, Dr. B.M. Shanker Venkatesh	Osmania Medical College, Hyderabad	A Study on Prevalence of Metallo-Beta lactamase Production in Non-Fermenting Gram-Negative Bacilli Isolated from Clinical Specimens in a Tertiary Care Hospital
ABS050	Dr Shaikh Mahmooduddin Moazzam Dr. G Ratna Prabha	Government Medical College Nalgonda	Prevalence of extended-spectrum beta-lactamase producing Gram-negative bacilli isolated from clinical specimens at tertiary care hospital, Nalgonda.
ABS057	Dr Navya Bachu	Chalmeda Anand Rao Institute of Medical Sciences	Rise of ANA positive antibody in COVID and associated comorbidity
ABS070	Dr.Govada Prajwala Priya Ashavarman Dr.B.Nirmala Grace Dr P.V Prasanna Kumar	Rangaraya Medical College, Kakinada	Microbiological Spectrum and Antibiotic Susceptibility Patterns of Non-Fermenting Gram-Negative Bacilli Isolated from Pyogenic Infections in a Tertiary Care Hospital
ABS072	Dr.Srinivas Jutta Dr R.Neerajakshi	Rangaraya Medical College, Kakinada	A study on Isolation and Identification of Enterococci species and their Antibiotic susceptibility from different clinical samples in a Tertiary care hospital.
ABS074	Dr Thenramizh Pavai.T Dr P.V. Prasanna Kumar	Rangaraya Medical College, Kakinada	Study on bacterial isolates from blood samples in all age group of patients and their antimicrobial susceptibility pattern in a Tertiary Care Hospital.
ABS076	Dr.Sana Fatima Dr. Tiyyagura Sarada	Shadan Institute of Medical Sciences, Hyderabad	Comparison between Conventional and Automated Blood Culture method in case of Septicemia
ABS078	Dr.Harshitha Naidu Pokala Dr P.Uma	NRI Medical College and General Hospital, Chinna Kakani	Comparative Evaluation of Fosfomycin Susceptibility in Carbapenem-Resistant Enterobacterales by MFAD, VITEK, and Disk Diffusion
ABS082	Dr Jyothi Doddi Dr Revathi Bonu Dr Syeda Saba Hashmiya Dr Manisha S Mane Dr Wajid Mahamad	ESIC Medical College and Sanathnagar, Hyderabad	Rapid and Sensitive Detection of Salmonella Enterica serovars by Loop Mediated Isothermal Amplification in a Tertiary Care Hospital.

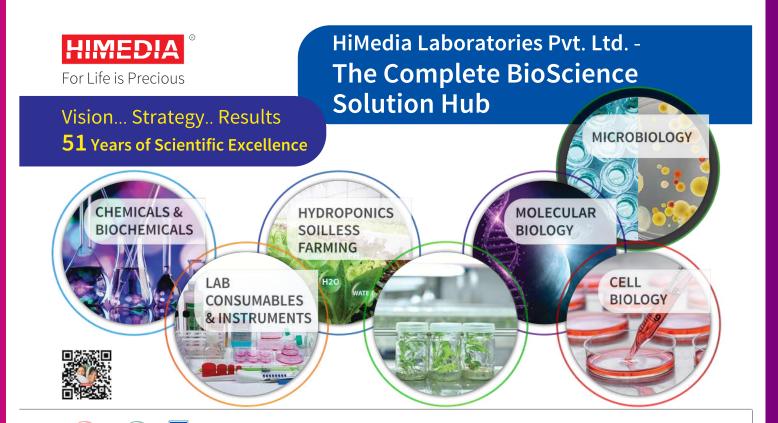
ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS084	Dr.Felix Devi Sri Dr. P Yogitha Dr. P Ratna Kumari	Andhra Medical College, Visakhapatnam	Pseudomonas aeruginosa in Pus Samples: A Hospital- Based Study on Prevalence, Antibiotic Sensitivity, and Nosocomial Implications"
ABS085	Dr.Lanka Priyanka Dr.T.M.S.S.Sudha Vani Dr. P. Ratna Kumari	Andhra Medical College, Visakhapatnam	A study of antimicrobial susceptibility trend in paediatric bacteremia in a tertiary care hospital, Visakhapatnam
ABS106	Dr.Swathy SR Dr.N.Padmapriya M.D Dr. V.Vijaya Swetha.M.D Dr.Ch.Sulakshana Sony	Government Medical College Ongole	A study of assessment of invitro action of colistin by Colistin broth disc elution method and broth microdilution method among carbapenemase-producing Enterobacterales
ABS125	Dr Bitra Harika Dr.Kathyayani.Y Dr.Jayalakshmi.L	Guntur Medical College, Guntur	Assessment of biofilm formation and drug resistance in candida species isolated from patients with leucorrhea in late pregnancy
ABS127	Dr. Adiba Fatima Dr. Nanditha.A Dr. B.M.Shanker Venkatesh	Osmania Medical College, Hyderabad	A Study on Prevalence of Mycobacterium tuberculosis and Rifampicin Resistance using TrueNat as a Rapid Point-of- Care Test in a Tertiary Care Hospital, Hyderabad
ABS136	Dr.Jerripothula Chandana Dr J.K. Surekha Dr. Uzma Tazyeen	Gandhi Medical College, Secunderabad	Comprehensive correlation of cerebrospinal fluid Analysis in Neurosurgical patients. Microbiological, Pathological and Biochemical properties.
ABS140	Dr.Korada Sumedha Angel Dr. B.Venkata Rao MD Dr. Y.Saritha	Govt. Siddhartha Medical College Vijayawada	Efficacy of Double disk synergy test (DDST) and Combined disk test (CDT) in detection of ESBL producing Escherichia coli and Klebsiella spp
ABS149	Dr.Ruqaiah Waliullah Dr.Sukanya Sudhaharan Dr.Umabala Pamidimukkala Dr.G. Radhika	Nizams Institute of Medical Sciences, Hyderabad	Clinico-microbiological characterization of vulvovaginal candidiasis in women of the reproductive age group
ABS150	Dr. Sakilam Aishwarya Dr. Farheen Banu Dr. J K Surekha	Gandhi Medical College, Secunderabad	Microbiological profiling and Antibiotic susceptibility pattern of bacterial pathogens isolated from neonatal septicemia cases in a tertiary care centre.
ABS160	Dr.Farha Anjum Dr. V.V. Shailaja Dr. P. Sunitha	Government Medical College, Siddipet	Clinico-Epidemiological Profile of Hansen's Disease in a Tertiary Care Center: Insights from the Post-Elimination period
ABS161	Dr Mallika N Dr Lakshmi Vemu	Kamineni Academy of Medical Sciences & Research Centre, Hyderabad	Spectrum of infections caused by Staphylococcus aureus
ABS165	Dr. S.Likitha Dr. M.L.Kavitha Latha Dr. B.M.Shaker Venkatesh	Osmania Medical College, Hyderabad	Correlation of Nugents Scoring with Clinical Diagnosis of Bacterial Vaginosis in Women Attending a Tertiary Care Center
ABS166	Dr Srirani Singam	Andhra Medical College, Visakhapatnam	Seroprevalence of scrub typhus positive rate in pyrexia of unknown origin in a tertiary care hospital
ABS167	Dr Yona Manchikalapati Dr. Wajiha Iftekhar Dr. S. Aruna	Neelima Institute of Medical Sciences, Hyderabad	COHESION: A Novel One Health-Based, Faculty-Mentored, Student-Led Operational Model in Microbiology Education.
ABS170	Dr Eluri Pratima	GMC, Sangareddy	Biofilm formation and antimicrobial resistance specially vancomycin resistance among Enterococcal species isolated from various clinical specimens in tertiary care hospital at Hyderabad

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS184	Dr.Shilpa Santoshi Yemike Dr Chelumalla Rajitha Dr J. K. Surekha	Gandhi Medical College Secunderabad	Prevalence and Spectrum of Dermatophytosis in aTertiary Care Hospital , Hyderabad, Telangana.
ABS188	Dr Marapalli Sindhoora Dr.Manisha S. Mane Dr.V.Prathyusha.P	ESIC Medical College, Sanathnagar, Hyderabad	Assessing the Accuracy of Colistin Susceptibility Testing: A Diagnostic Performance Review
ABS190	Dr. V. Jahnavi Dr. S. Swapna Dr. P. Venkata Ramana Dr. P. Ratna Kumari	Andhra Medical College, King George Hospital, Visakhapatnam	Microbiological Profile and Antibiotic Susceptibility Patterns of Uropathogens in Hemodialysis patients at a government tertiary care hospital.
ABS193	Dr.Wajeeda Begum Dr. G. V. Padmaja	Osmania Medical College, Hyderabad	Phenotypic and Genotypic characterization of Methicillin resistance Staphylococcus aureus isolated in a Tertiary Care Hospital in Hyderabad
ABS199	Dr. Asiya parveen Dr.Neelima Sudharshan Dr.Tasneem Dr.M.A. Patil Dr.Vijay Dharma Teja	Nizams institute of medical sciences, Hyderabad	Unmaskingthe Diversity and Drug Resistance in Mycobacterium abscessus Complex:A Molecular and Phenotypic Insight from a Tertiary Care Center
ABS200	Dr Kanugula Harika Dr. Swathi Suravaram Dr. Suhasini Gazula	ESIC Superspeciality Hospital, Hyderabad	Spectrum and Resistance Trends in Paediatric UTIs among patients with congenital kidney and urinary tract anomalies at a Government Superspeciality Hospital
ABS209	Dr. B. Mounika Dr. V. Sudharani Dr. B. M. Shanker Venkatesh	Osmania Medical College, Hyderabad	Detection of Atypical bacterial agents in patients with Community Acquired Pneumonia by Serological methods at a Tertiary Care Hospital in Hyderabad, Telangana
ABS210	Dr.Naziya Sameera Dr.J.K.Surekha	Osmania Medical College, Hyderabad	Evaluation of microbial air contamination in high risk areas by active sampling method and surface sampling of operation theatres of a tertiary care center, Hyderabad
ABS211	Dr Sampath Eunice Sophia Dr.B.M.Shanker Venkatesh	Osmania Medical College, Hyderabad	Biofilm detection in Neonatal sepsis Isolates using phenotypic assays:Congo red agar,Tube adherence test and Microtiter plate assay
ABS215	Dr.Vadaka Devika Vani Dr. Kathyayani. Y Dr. Jayalakshmi. L Dr. Kavitha	Guntur Medical College, Guntur	Co-infection of Hepatitis B and Hepatitis C in Patients Attending ART Centre and their Treatment Response with Reference to the Viral Load Levels at a Tertiary Care Hospital
ABS224	Dr Pathan Sahera Khanam Dr.P.Sahera khanam Dr .B.V.Sivamma Dr.L.Naga Madhavi	Guntur Medical College, Guntur	Cytomegalovirus Seropositivity and Sociodemographic Correlates: A Prospective Analysis at a South Indian Tertiary Hospital
ABS225	Dr. Priyadharshanni A	All India Institute of Medical Sciences, Mangalagiri	Regulation of Developmental Growth and Conidiation of Aspergillus in- vitro by inhibiting Glutamine synthase

POSTERS-ABSTRACTS

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS001	Dr Juwairiah Abdur Raheem	Apollo Institute of Medical Sciences and Research	Profile of bacterial pathogens and their antibiotic sensitivity pattern in neonatal sepsis
ABS003	Dr Kota Sushmita	Apollo Institute of Medical Sciences and Research	Bacteriological profile in clinically suspected Community Acquired Pneumonia patients at a tertiary care centre in Telangana.
ABS004	Dr Manyam Sandeep Kumar	Gandhi Medical College	Microbial profile and antimicrobial susceptibility pattern in burns patients attending a tertiary care hospital
ABS005	Dr Apuru Giri Prasad	Gandhi Medical College	Microbial profile and antimicrobial susceptibility pattern in diabetic foot ulcer patients attending a tertiary care hospital.
ABS008	Dr Samiya Nishath	Osmania Medical College	A panoramic assessment of candida prevalence and speciation in oral candidiasis within immunologically vulnerable cohorts
ABS010	Dr Swetha Ijjada	Guntur Medical College	Seroprevalence of Herpes simplex type 1 and type 2 among antenatal women attending a tertiary care hospital
ABS013	Dr Adimulam Divya Sai Teja	Gandhi Medical College	Prevalence and antibiogram of asymptomatic bacteriuria (ASB)in antenatal women at a tertiary care hospital
ABS014	Dr Adimulam Divya Sai Teja	Gandhi Medical College	Prevalence of RSV in children below 5 years of age admitted in tertiary hospital with acute respiratory infections
ABS016	Dr Morthala Gopinath Reddy	Government medical college Siddipet	Microbial contamination on mobile phones of health care workers at a tertiary care hospital.
ABS017	Dr Ruhmaann Ealias	ESIC Medical College and Hospital, Kalaburagi	Microbiological profile and antimicrobial susceptibility pattern of central line associated bloodstream infections in a tertiary care hospital
ABS019	Dr Priyanka Alagur	ESIC Medical College and Hospital	Isolation and antibiogram of Coagulase negative Staphylococci with special reference to methicillin resistance in a tertiary care centre
ABS020	Dr Ann Maria Baby	ESIC Medical College and Hospital	Speciation of candida species isolated from clinical specimens by using Chrom agar and conventional methods.
ABS021	Dr Ghousia Sultana	Mallareddy Institute of Medical Sciences	Study of bacteremia by automated blood culture methods in neonates at a tertiary care hospital
ABS022	Dr M Rani	Mallareddy Institute of Medical Sciences	Bacteriological profile of surgical site infections in a tertiary care hospital
ABS023	Dr Ayesha Areej	Mallareddy Institute of Medical Sciences	Bacteriological profile of UTI in pregnant women in a tertiary care hospital
ABS024	Dr Sana Fatima	Shadan Institute of Medical Sciences	Biomedical waste management: a critical review of practices, challenges and policy implications
ABS026	Dr Talari Pulendar Naidu	Gandhi Medical College	Comparison of rapid diagnostic test (RDT) and enzyme- linked immunosorbent assay (ELISA) for HCV among dialysis patients in a tertiary care hospital
ABS028	Dr Satya Tirisha Nadakuduru	Siddharth Medical College	Serological evaluation of parvo B19 virus among children under 12 years age group

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS030	Dr Yogaraj N	Government Medical College Ongole	Evaluation of hand hygiene knowledge, attitude and practice among postgraduates, CRMIs and staff nurses working at a tertiary care hospital in Ongole.
ABS031	Dr Thenmozhi M	Andhra Medical College Visakhapatnam	Study of colistin resistance in carbapenem resistant Escherichia coli by broth micro dilution method from intensive care units samples in a tertiary care hospital
ABS034	Dr Shaik Sabiha Sultana	Gandhi Medical College Secunderabad	Prevalence of co-production of ESBL (extended spectrum beta lactamases) and Amp C beta lactamases in Acinetobacter clinical isolates.
ABS035	Dr Yeddula Supriya	Guntur Medical College	Speciation of Candida isolated from blood samples in a tertiary care hospital, Guntur.
ABS037	Dr Sailaja M	Dr Patnam Mahender Reddy Medical College	Fungal spectrum of otomycosis in a tertiary care hospital
ABS038	Dr Sangu Nagalaxmi Anusha	Gandhi Medical College	Antibiogram of hemodialysis catheter related blood stream infections
ABS040	Dr Venkata Surya Eddula	Gandhi Medical College	Prevalence of azole resistance among candida species isolated from clinical specimens in a tertiary care hospital
ABS045	Dr Pudari Akhila	Gandhi Medical College and Hospital	Epidemiology and seroprevalence of Toxoplasma gondii in a paediatric group at a tertiary care centre
ABS047	Dr Kalkoda Kiranmai	Gandhi Medical College Secunderabad	Biofilm formation & its role in microbiological resistance among Uropathogens isolated from hospitalized patients.
ABS048	Dr Dasari Vineela	Rangaraya Medical College Kakinada Andhra Pradesh.	Aerobic bacteriological analysis of high vaginal swabs from women of reproductive age at a tertiary hospital
ABS049	Dr Kinnera Anuhya	Gandhi Medical College	Bacteriological profile and its antimicrobial susceptibility pattern for necrotising fasciitis in a tertiary care hospital, Telangana.
ABS051	Dr Dhivya Dharshini R P	Gandhi Medical College, Telangana	Phenotypic detection of carbapenemase production in Enterobacteriaceae in a tertiary care hospital, Telangana
ABS052	Dr Pokala Mounika	Government Medical College, Kadapa	Awareness and attitudes towards antimicrobial resistance among healthcare workers
ABS053	Dr Shaik Dawood Suhail	Government Medical College (RIMS) Kadapa	Comprehensive analysis of Tuberculosis detection and Rifampicin resistance using CBNAAT in a tertiary care centre
ABS054	Dr Shoba.M.R	Government Medical College Kadapa	Prevalence of Methicillin Resistance Staphylococcus aureus (MRSA) nasal carriers among the healthcare workers in a tertiary care hospital
ABS056	Dr B Krithiga Priyadarshini	Government Medical College Kadapa	Bacteriological profile and antimicrobial resistance patterns in neonatal sepsis: a tertiary care hospital based study
ABS060	r Podila Manognya	Malla Reddy Institute of Medical Sciences	Antibiotic resistance patterns of Methicillin-Resistant Staphylococcus aureus (MRSA) isolates in clinical samples at a tertiary care hospital
ABS061	Dr Soma Samunnath	Malla Reddy Institute of Medical Science	Bacteriological profile and antibiogram in diabetic foot infections in a tertiary care


ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS063	Dr. R Kethana	Kamineni Academy of Medical Sciences and Research centre	Prevalence of different species Enterococcus in urine sample and their antibiotic resistance pattern in a tertiary care hospital
ABS064	Dr Raathana Maanasa	Malla Reddy Institute of Medical Sciences	Bacteriological profile of UTI in pregnant women
ABS066	Dr Toopran Samay	Malla Reddy Institute of Medical Sciences	Bacteriological profile and antibiotics susceptibility of blood stream infections in adults at a tertiary care center
ABS067	Dr Lavanya Kanaparthi	Rangaraya Medical College	Comparative study of Dengue positive cases via ELISA and rapid diagnostic tests
ABS068	Dr Syeda Bushra Shereen	Kamineni Institute of Medical Science and Research center	Antimicrobial resistance trends in Salmonella isolates from blood and bone marrow cultures
ABS069	Dr Subhashini	Government Medical College Ongole	From awareness to action: confronting the AMR challenges and importance of comments and footnotes on Clinical Microbiology
ABS071	Dr Lekkala Pavani	Rangaraya Medical College	Epidemiological analysis of Chikungunya virus infection using IgM Capture ELISA: a multi-dimensional study of age, gender, and geographic patterns
ABS075	Dr.Sana Fatima	Shadan Institute of Medical Sciences	Assessing the burden of Surgical Site Infections in a tertiary care hospital
ABS079	Dr Syeda Farmeen Quadri	Mediciti Institute of Medical Sciences	Bacteriological profile of white coat-traditional symbol of physician's hygiene under scrutiny for potential infection
ABS080	Dr Sowmya Devi N	Osmania Medical College	Study on bacterial etiology of lower respiratory tract infections and their antimicrobial susceptibility patterns at a tertiary care hospital in Hyderabad
ABS083	Dr Raja Raja Pawan Kumar	Rangaraya Medical College	Persistent prevalence of Leprosy - the fight isn't over
ABS087	Dr Badike Usha	Osmania Medical College	A study on seroprevalence of Dengue at a tertiary care center, Hyderabad
ABS088	Dr Sathiya Priya M	Rangaraya Medical College	Prevalence of ESBL producing Escherichia coli in urinary isolates-a growing concern
ABS091	Dr Aruna M	Osmania Medical College	A study on seroprevalence of Transfusion Transmitted infections among blood donors at a tertiary care center, Hyderabad
ABS092	Dr Vangara Radha Devi	Government Siddhartha Medical College Vijayawada	A retrospective study on seroprevalence of Scrub typhus in a tertiary care hospital
ABS093	Dr M Aswini Kiran	Government Siddhartha Medical College Vijayawada	Bacteriological profile and antibiotic susceptibility pattern of gram negative isolates from blood cultures
ABS097	Dr Mohammad Mashkura Qureshi	Siddhartha Medical College	Co-infection of Hepatitis-B virus and Hepatitis-C virus in HIV positive individuals
ABS098	Dr Taying Jirmin	Government Siddhartha Medical College Vijayawada	A study on detection of Measles IgM and IgG antibodies in children.
ABS100	Dr. B. Sneha	RVMIMS & RC	Screening for nasal carriage of Methicillin-Resistant Staphylococcus aureus among healthcare professionals in a tertiary care hospital in Siddipet district, Telangana.
ABS101	Dr Munga Ravindrani	Gandhi Medical College	Role of CRP levels for early prediction of severity of Dengue infection in adults in tertiary care hospital

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS102	Dr Indla Anusha Sumalatha	Government Siddhartha Medical College Vijayawada	Bacteriological profile and antibiotic susceptibility pattern of high vaginal swabs
ABS105	Dr Mukesh N	Government Siddhartha Medical College Vijayawada	Antibiogram of Enterococcus species isolated from urine culture
ABS107	Dr Kummaragunta Evangeline	Government Siddhartha Medical College Vijayawada	Detection of Hepatitis A virus RNA by PCR in serum samples from individuals who are seropositive for HAV IgM antibodies
ABS109	Dr Shaik Abdul Razak	Government Siddhartha Medical College Vijayawada	A study to evaluate Hepatitis E virus seropositivity in a tertiary care hospital
ABS110	Dr Viswanath Muthusamy	Government Siddhartha Medical College Vijayawada	Antibiogram of Acinetobacter species isolated from various clinical samples
ABS111	Dr Padmapriya B	Government Siddhartha Medical College Vijayawada	Antimicrobial susceptibility pattern of Escherichia coli and Klebsiella pneumoniae isolated from urine samples in females
ABS113	Dr Sunitha Bodi Nagyalla	Government Siddhartha Medical College Vijayawada	Prevalence of Norovirus in children with acute gastroenteritis.
ABS114	Dr Karanam Vanaja	Guntur Medical College Guntur	A study on knowledge, attitude and practices regarding antimicrobial use, resistance and stewardship among the health care professionals in a tertiary care hospital.
ABS119	Dr Andra Sahithi	Government Medical College Ongole.	Acknowledge, attitude, and implementation of antimicrobial use and awareness of antimicrobial resistance among doctors
ABS120	Dr Gali Priya Vandana	Rangaraya Medical college Kakinada	In Sero veritas: employing IgM ELISA to uncover the hidden burden of Scrub typhus in a tertiary hospital, Kakinada
ABS121	Dr Varsha K	Rangaraya Medical College Kakinada Andhra Pradesh	From gut to bile: Disseminated Strongyloidiasis in a tuberculosis patient with enterocutaneous fistula
ABS122	Dr Pothupeta Mansoor	Rangaraya Medical College Kakinada	Microsporidial keratitis in an immunocompetent host: diagnostic utility of Calcofluor white staining
ABS126	Dr Bilal Mohammed M	Osmania Medical College	A prospective study of Central Line-Associated Bloodstream Infections (CLABSI) in neonates in the NICU of a tertiary care centre using UVC, UAC, PICC, and Central line tip cultures
ABS128	Dr Sangaraju Jayaprakash	Govt Medical College Kadapa	A study on safe injection practices: preventing infections at the tertiary care hospital.
ABS129	Dr Pericharla Akhila	Rangaraya Medical College	Burden of Hepatitis A in children: insights from tertiary care centre
ABS130	Dr.K.Bhagya Rajeswari	Govt. Siddhartha medical college	Case based insights into cryptococcal meningitis in PL HIV
ABS131	Dr Nallabolu Sindhuja	Surabhi Institute of Medical Sciences	A prospective cross-sectional study to evaluate prevalence and antibiotic sensitivity pattern of the bacterial isolates from pus samples in a tertiary care hospital of Telangana.
ABS132	Dr Yeddula Puja Siva Varuna	Government Medical College Kadapa	Correlation between hand hygiene adherence rate and health care associated infections in a tertiary care hospital.

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS135	Dr Juveria Ambreen Fathima	Osmania Medical College	A study on bacteriological and antibiotic resistance profile in neonatal sepsis at tertiary care hospital
ABS137	Dr Bhavya Natta	Rangaraya Medical College	Antimicrobial susceptibility testing pattern of Staphylococcus aureus among various isolates in a tertiary care hospital.
ABS138	Dr Shaik Mohiseen Begum	Patnam Mahendarreddy Institute of Medical Sciences	KOH mount to the rescue:Early diagnosis of Eumycetoma
ABS139	Dr Donthula Suma	Osmania Medical College	A study on characterization and antibiotic resistance pattern of bacteria isolated from Catheter associated Urinary tract infections in a tertiary care hospital.
ABS141	Dr Vindhya Rani Mandaloju	Krishna Institute of Medical Sciences	Comparison of Mantoux test and TB gold Quantiferon plus (Qft-plus) test for diagnosis of tuberculosis infection in tertiary care hospital
ABS145	Dr Shaik Mahammad Rafi	Government Siddhartha Medical College Vijayawada	Carbapenem resistance in Escherichia coli and Klebsiella species isolated from blood culture
ABS146	Dr Garikipati Eesha	Chalmeda Ananda Rai Institute of Medical Science	Isolation, speciation, and antifungal susceptibility testing of non-Candida albicans isolated from various clinical samples
ABS147	Dr Komanduri Krishnaveni	Kakatiya Medical College Hanamkonda	A comparative study of rapid ICT with ELISA for viral screening in patients undergoing hemodialysis at tertiary care centre.
ABS148	Dr Putturu Enders Samuel Rajeev	Government Medical College Mahabubnagar	Aerobic bacteriological profile and antibiotic susceptibility pattern of wound infections in orthopedic patients at a tertiary care hospital.
ABS151	Dr Shaik Shabeen Sultana	Government Medical College Mahabubnagar	Bacteriological and antibiotic susceptibility profile of post-operative wound infections in a tertiary care hospital
ABS153	Dr Lubna Nazir Hussain	Osmania Medical College	Detection of multidrug resistant organisms in orthopedic implant infections and measures to control infection at a tertiary care hospital
ABS154	Dr Thallapally Shiny Krupa	Osmania Medical College	Prevalence of Neisseria gonorrhoeae and its antimicrobial susceptibility patterns in patients attending a tertiary care centre in Hyderabad
ABS155	Dr Ellala Prasanna	Kakatiya Medical College	A study on identification of bacterial isolates and their anti-microbial susceptibility pattern from pus samples in tertiary care hospital Warangal
ABS156	Dr Sameena Tasleem	Gandhi Medical College	A study of multidrug-resistance aerobic bacteria causing surgical site infections in postoperative cases from the general surgery department at a tertiary care hospital
ABS157	Dr Deepa Rekha R	ESIC Medical College and Hospital,Sanathnagar	From cradle to culture: tracking tiny invaders in neonatal sepsis
ABS158	Dr Akshaya Rajendran	Osmania Medical College	A study on bacteriological profile of samples from burns patients and the antimicrobial susceptibility testing at a tertiary care hospital, Hyderabad
ABS159	Dr Lella Pranitha	Osmania Medical College	Evaluation of etiological agents and antibiogram pattern of isolates in urine samples at tertiary care hospital, Hyderabad

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS162	Dr Neelam Khyati Prasad	Osmania Medical College	Point of care rapid immunochromatography test for Enteric fever in patients attending a tertiary care centre in Hyderabad, India.
ABS163	Dr Madhiri Sheeba	Guntur Medical College	To study the seroprevalence of Anti-Streptolysin O (ASO) titres among patients attending a tertiary care hospital
ABS164	Dr Velamuri Sai Shiva Ganesh Abhishek	Krishna Institute of Medical Sciences	Bacteriological profile of Prosthetic Joint Infections (PJI) in a tertiary care hospital.
ABS168	Dr Jella Gowthami	Nizams Institute of Medical Sciences	Brain abscess caused by Salmonella species following resection of pilocytic astrocytoma in a child: A rare case report
ABS169	Dr A Praveen Kumar	Government Medical College Suryapet	Prevalence of Tuberculosis among HIV positive individuals at tertiary care hospital, Suryapet
ABS171	Dr Tumati Xavier Chaitanya	Rangaraya Medical College	Seroprevalence of Leptospirosis in Acute Febrile illness cases in a tertiary hospital, Kakinada
ABS174	Dr Bondalapati Hebsiba	Andhra Medical College Visakhapatnam	A study of antimicrobial susceptibility of a novel drug Levonadifloxacin against blood stream Staphylococcal infections in a tertiary care hospital, Visakhapatnam.
ABS175	Dr Mohammed Hameeda Tasneem	Guntur Medical College	Inducible Clindamycin resistance among Staphylococcus species :A comparative study.
ABS176	Dr A Nagaraju	ESIC Medical College and Hospital, Sanathnagar	Microbiological profile of bloodstream infections in haematological cancer patients in a tertiary care hospital
ABS177	Dr Aarthipriya M	Government Medical College Suryapet	A study on the bacteriological profile and antimicrobial susceptibility pattern of neonatal sepsis at tertiary care hospital, Suryapet.
ABS178	Dr Dangeti Purna Bindu	Rangaraya Medical College Kakinada	The golden Staph dilemma: MSSA vs MRSA
ABS180	Dr Y Sukumar	Government Medical College Kadapa	A study on knowledge, attitude and practices regarding BMW management among healthcare providers at a tertiary care hospital.
ABS181	Dr Thoti Bhanusree	Government Medical College Kadapa	Virological profile of acute respiratory distress syndrome in a tertiary care hospital a molecular approach using RT PCR.
ABS182	Dr S.Aiswarya	Government Medical College Kadapa	Mantoux test interpretation in pediatric age group-clinical history and vaccination correlation with induration size.
ABS183	Dr Preethi V	Government Medical College Kadapa	Characterization of bacterial isolates and their antimicrobial susceptibility patterns of different isolates from throat swabs
ABS185	Dr Kusu Subrahmanyeswari	Rangaraya Medical College Kakinada Andhra Pradesh	Study of bacteriological profile of pleural fluid and antibiogram of isolates among patients attending tertiary care hospital
ABS186	Dr Dhaniyakula Varchaswini	Osmania Medical College	A study on prevalence of vancomycin resistant Enterococcus among different clinical samples at tertiary care center
ABS187	Dr Mythili T	Government Medical College Kadapa	Phenotypic detection of hypermucoviscus Klebsiella pneumoniae by string test
ABS191	Dr Kethavath Maruthi Pavan Naik	Government Medical College Kadapa	ToRCH seroprevalence beyond neonates -a retrospective study from tertiary care hospital.

ABSTRACT ID	AUTHORS	INSTITUTE	STUDY TITLE
ABS192	Dr Kaki Divya	Guntur Medical College	A study on Knowledge , Attitude and Practices regarding standard precautions for the prevention and control of infections among the health care workers in a tertiary care hospital.
ABS196	Dr Surisetti Roja	NRI Institute of Medical Sciences Sangivalasa Visakhapatnam	Etiological profile of patients presenting with acute febrile illness with thrombocytopenia in a tertiary care hospital.
ABS197	Dr Hima Swetha G	Government Medical College Kadapa	A study on knowledge, attitude and practices regarding needle-stick injuries among healthcare workers at a tertiary care hospital
ABS198	Dr Kalava Sita Rama Shankar	NRIIMS	Seropositivity of Dengue NS1,IgM/IgG and Scrub typhus IgM/IgG among patients admitted in a tertiary care hospital
ABS202	Dr Alivia Jamatia	Osmania Medical College	Multidrug resistance of Escherichia coli from outpatient uncomplicated urinary tract infection in tertiary care institution
ABS203	Dr Mohammed Yasser Arafath K M	Osmania Medical College	A retrospective study on Corynebacterium diphtheria cases among patients attending tertiary care center, Hyderabad, Telangana.
ABS204	Dr Himabindu irrinki	Osmania Medical College	Seroprevalence of Syphilis in different patient groups attending a tertiary health care centre, in Hyderabad
ABS205	Dr Chennuru Sai Saketh Reddy	ESIC Medical College and Hospital	Clinico-microbiological profile of aural infections and their susceptibility pattern in a tertiary care center
ABS206	Dr Shazia Naaz	Mamata Academy of Medical Sciences	RCA, CAPA, and feedback as drivers of infection control compliance under NABH 6th edition: closing the loop
ABS207	Dr Sanapala Keerthana	NRI Institute of Medical Sciences	A study on seropositivity of HIV-1, HIV-2 and HbSAg among patients admitted in a tertiary care hospital
ABS208	Dr Satyadeep Dirisina	GMC Ongole	One health approach for antimicrobial resistance
ABS213	Dr Kadiricheni Sathya Sai Rohith Goud	Government Siddhartha Medical College	Evaluation of the bacterial pathogens isolated from ET cultures of febrile and non-febrile mechanicallyventilated patients
ABS220	Dr Sofia Ahmed	Nizams Institute of Medical Sciences	A diagnostic comparison: Artificial intelligence- based analysis vs conventional culture method
ABS222	Dr Sayeeda begum	Nizams Institute of Medical Sciences	Comparative analysis of biofire filmarray and conventional culture in clinically suspected pneumonia cases: focus on pathogen detection, antimicrobial resistance, and viral identification
ABS223	Dr Mohammed Ismail Siddique	Kakatiya Medical College	Comparative evaluation of conventional and molecular diagnostics for pulmonary tuberculosis and drug resistance in a tertiary care setting

www.himedialabs.com

ISO 13485-2016 CERTIFIED

••• expect only quality from us

in vitro diagnostic screening test for IFI (including Candida, Aspergillus and Pneumocystis) that detects (1 \rightarrow 3)- β -D-Glucan in serum

Marketed & Distrubuted by
5 Local Shoping Centre, Behind Milan Cinema, Karampura, New Delhi-110 015
Teb: +91 11 2515 5465-59, Fax: +91 11 2511 4494
Email: Info@annafbros.com. www.anandbros.

info@himedialabs.com

+91-22-6147 1919

Low-cost access to high-output PromethION sequencing

Offering the flexibility of two independent, high-output PromethION flow cells, the compact PromethION devices deliver the compact PromethION devices deliver the benefits of high-coverage nanopore sequencing to users with lower sample processing requirements. Get fully integrated sequencing and analysis with PromethION 2 integrated or expand your GridION/existing compute infrastructure with PromethION 2

Multiplexed sequencing of up to 96 samples with PCR or PCR-free barcoding

>100 million cDNA reads

Flexible DNA/RNA high-throughput

Offering the flexibility of 24 independently controllable, high-output flowcells and controllable, ingli-output rincerls and GPU technology. PromethION 24 (P24) provides single or multiple users with on-demand access to terabases of sequencing data. PromethION 48 (P48) most powerful cing device, delivers twice the capacity and output of P24 - ideal for large and production-scale sequencing projects

>200 Gb on metagenomic samples (read N50 ~ 10 kb)

Buy your PromethION sequencer from Genotypic

Flow cells, sequencing kits, wash kits Contact our experts for custom purchase

otypic Technology Pvt. Ltd. #2/13, Balaji Complex, 80 ft Road, R.M.V Second Stage, Bengaluru-560094 Indi

+91 96117 14948, +91 99000 35748

VISHNUBIOSCIENCES

"Your Trusted Business Partner & Solution Provider for Advanced Diagnostic Needs"

- (+91 9959821279 / 8977244492
- connect@vishnubiosciences.in
- Plot no.511, 2nd floor, Sai's fashion hub building, www.vishnubiosciences.in
 Pragathinagar, Opp.JNTU Road, Kukatpally, Hyderabad-500090

SHADAN INSTITUTE OF MEDICAL SCIENCES (SIMS) TEACHING HOSPITAL & RESEARCH CENTRE

A POST GRADUATE INSTITUTE

(A MINORITY INSTITUTION)

Affitiated to Kaloji Narayana Rao University of Health Sciences, Warangal-506007, Telangana State Himayathsagar Road, Hyderabad - 500 091 Telangana State, INDIA

Phones: +91-40-2988 1036 / 37 / 61 / 62 / 63 , Fax: +91-40-66669915, Off: +91-40-29886161 Toll Free: 18001032720, http://www.shadan.in Email: shadan.sims@gmail.com, shadan.sims@yahoo.com

Dr. Mohammed Vizarath Rasool Khan Founder Father & Chief Promoter

"I sincerely wish to eradicate the Evilness of **Donation and Capitations from primary to higher** education and ensure merit is followed to spread education among masses, and to make Education Reachable and Affordable to the poorest of the Poor".

AYAAN INSTITUTE OF MEDICAL SCIENCES (AIMS)

TEACHING HOSPITAL & RESEARCH CENTRE

(A MINORITY INSTITUTION)

Affitiated to Kaloji Narayana Rao University of Health Sciences, Warangal-506007, Telangana State Kanakamamidi(V), Moinabad(M), Ranga Reddy District-501504, Telangana State INDIA Telephones: 08417-252263/64/65, Fax: 040-23732786, Off.: +91-40-29888181 website: http://www.aimshyd.in, e-mail: aims.ayaan@gmail.com, aims.ayaan@yahoo.com

Dr. Mohammed Vizarath Rasool Khan Founder Father & Chief Promoter

"I sincerely wish to eradicate the Evilness of Donation and Capitations from primary to higher education and ensure merit is followed to spread education among masses, and to make Education Reachable and Affordable to the poorest of the Poor".

Dr. V.R.K. WOMEN'S MEDICAL COLLEGE

TEACHING HOSPITAL & RESEARCH CENTRE

A POST GRADUATE INSTITUTE

(A MINORITY INSTITUTION)

Affitiated to Kaloji Narayana Rao University of Health Sciences, Warangal-506007, Telangana State Opp. National Deer Park, Aziznagar(V), Moinabad (M), R.R. Dist. 500 075, Telangana State, INDIA Tel No: 08413-235786, 235114, 235404, 235074, Fax: 08413-235072 / 71, Off: +91-40-29887171 Toll Free: 18001232696, Website: http://www.drvrkwmc.com, e-mail: drvrkwmc@gmail.com, drvrkwmc@ymail.com

Dr. Mohammed Vizarath Rasool Khan Founder Father & Chief Promoter

"I sincerely wish to eradicate the Evilness of Donation and Capitations from primary to higher education and ensure merit is followed to spread education among masses, and to make Education Reachable and Affordable to the poorest of the Poor".

SHADAN INSTITUTE OF MEDICAL SCIENCES (SIMS) TEACHING HOSPITAL & RESEARCH CENTRE

A POST GRADUATE INSTITUTE (A Minority Institution)

Affitiated to Kaloji Narayana Rao University of Health Sciences, Warangal-506007, Telangana State Himayathsagar Road, Hyderabad - 500 091 Telangana State, INDIA

Phones: +91-40-2988 1036 / 37 / 61 / 62 / 63, Fax: +91-40-66669915, Off: +91-40-29886161 Toll Free: 18001032720, http://www.shadan.in Email: shadan.sims@gmail.com, shadan.sims@yahoo.com

SERVICES:

- FREE REGISTRATION
- 2. FREE ADMISSION
- FREE CONSULTATION
- 4. FREE TREATMENT
- FREE MEDICINES, OP/IP
- 6. FREE INVESTIGATIONS
- 7. FREE NURSING CARE
- 8. FREE EYE CHECK UP
- FREE DENTAL CHECK UP
- 10. FREE ANTENATAL CHECK UP
- 11. FREE TB TREATMENT
- 12. FREE NICU ADMISSION
- 13. FREE HIV/AIDS COUNSELLING/ICTC CENTRE

- 14. FREE PHYSIOTHERAPY TREATMENT
- 15. FREE CATARACT SURGERY
- 16. FREE VACCINATIONS
- 17. FREE THEURAPEUTIC & DIETITIC CONSULTATION
- 18.FREE DERMATOLOGY & PSYCHIATRY CONSULTATION
- 19. FREE MINOR SURGICAL CASES IN OP
- 20.24 HOURS AMBULANCE SERVICE

Dr. Mohammed Vizarath Rasool Khan Founder Father & Chief Promoter

- 21. LATEST CT SCAN AVAILABLE
- 22. 24 HOURS ACCIDENT & **EMERGENCY SERVICES** AVAILABLE
- 23. LATEST MRI FACILITY AVAILABLE
- 24. LATEST MAMMOGRAPHY FACILITY AVAILABLE
- 25. LATEST COLOR DOPPLER & 2D ECHO AVAILABLE
- 26. ENDOSCOPY FACILITY AVAILABLE
- 27. LITHOTRIPSY & UROLOGY CONSULTATION AVAILABLE
- 28. LAPROSCOPIC SURGERY FACILITY AVAILABLE
- 29. AROGYASRI FACILITY AVAILABLE
- 30. FREE COMPLETE MEDICAL CHECKUP

- 31. FREE DIABETOLOGY CHECKUP
- 32. FREE ENDOCRINOLOGY CHECKUP
- 33. FREE PAEDIATRIC CHECKUP
- 34. FREE PULMONOLOGY CHECKUP
- FREE GENERAL SURGERIES
- FREE CIRCUMCISSIONS 36.
- FREE CAESAREAN SECTION
- 38. FREE NORMAL DELIVERIES
- 39. FREE GYNAEC SURGERIES
- 40. FREE E.N.T SURGERY
- 41. FREE TONSILLECTOMY
- 42. FREE GLAUCOMA CLINIC

SUPER SPECIALITY **SERVICES**

- **ONCOLOGY CLINIC**
- 2. NEPHROLOGY CLINIC
- PLASTIC SURGERY 3.
- CARDIOLOGY CLINIC
- NEUROLOGY CLINIC
- PAEDIATRIC CLINIC
- **UROLOGY CLINIC** 7.
- GASTROENTEROLOGY CLINIC